利用李对称方法和几种积分方法构造幂律非线性和密度相关扩散非线性对流-扩散-反应方程的多个新的解析孤子解和各种动力学行为

IF 13 1区 工程技术 Q1 ENGINEERING, MARINE
Shoukry El-Ganaini , Sachin Kumar , Monika Niwas
{"title":"利用李对称方法和几种积分方法构造幂律非线性和密度相关扩散非线性对流-扩散-反应方程的多个新的解析孤子解和各种动力学行为","authors":"Shoukry El-Ganaini ,&nbsp;Sachin Kumar ,&nbsp;Monika Niwas","doi":"10.1016/j.joes.2022.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>By taking advantage of three different computational analytical methods: the Lie symmetry analysis, the generalized Riccati equation mapping approach, and the modified Kudryashov approach, we construct multiple new analytical soliton solutions to the nonlinear convection-diffusion-reaction equation (NCDR) with power-law nonlinearity and density-dependent diffusion. Lie symmetry analysis is one of the powerful techniques that reduce the higher-order partial differential equation into an ordinary differential equation by reduction of independent variables. By the Lie group technique, we obtain one-parameter invariant transformations, determining equations and corresponding vectors for the considered convection-diffusion-reaction equation. By treating the parameters of the governing equation as constants, the applied methods yield a variety of new closed-form solutions, including inverse function solutions, periodic solutions, exponential function solutions, dark solitons, singular solitons, combo bright-singular solitons, and the combine of bright-dark solitons and dark-bright solitons. Moreover, using the Bäcklund transformation of the generalized Riccati equation and modified Kudryashov method, we can construct multiple solitons and other solutions of the considered equation. The obtained new solutions of this work demonstrate that the used approaches are powerful and effective in dealing with nonlinear equations, and that these solutions are required to explain many biological and physical phenomena. Comparing our obtained solutions of this paper with the ones obtained in the literature, we see that our solutions are new and not reported elsewhere. These newly formed soliton solutions will be more beneficial in the various disciplines of ocean engineering, plasma physics, and nonlinear sciences.</p></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"8 3","pages":"Pages 226-237"},"PeriodicalIF":13.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Construction of multiple new analytical soliton solutions and various dynamical behaviors to the nonlinear convection-diffusion-reaction equation with power-law nonlinearity and density-dependent diffusion via Lie symmetry approach together with a couple of integration approaches\",\"authors\":\"Shoukry El-Ganaini ,&nbsp;Sachin Kumar ,&nbsp;Monika Niwas\",\"doi\":\"10.1016/j.joes.2022.01.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By taking advantage of three different computational analytical methods: the Lie symmetry analysis, the generalized Riccati equation mapping approach, and the modified Kudryashov approach, we construct multiple new analytical soliton solutions to the nonlinear convection-diffusion-reaction equation (NCDR) with power-law nonlinearity and density-dependent diffusion. Lie symmetry analysis is one of the powerful techniques that reduce the higher-order partial differential equation into an ordinary differential equation by reduction of independent variables. By the Lie group technique, we obtain one-parameter invariant transformations, determining equations and corresponding vectors for the considered convection-diffusion-reaction equation. By treating the parameters of the governing equation as constants, the applied methods yield a variety of new closed-form solutions, including inverse function solutions, periodic solutions, exponential function solutions, dark solitons, singular solitons, combo bright-singular solitons, and the combine of bright-dark solitons and dark-bright solitons. Moreover, using the Bäcklund transformation of the generalized Riccati equation and modified Kudryashov method, we can construct multiple solitons and other solutions of the considered equation. The obtained new solutions of this work demonstrate that the used approaches are powerful and effective in dealing with nonlinear equations, and that these solutions are required to explain many biological and physical phenomena. Comparing our obtained solutions of this paper with the ones obtained in the literature, we see that our solutions are new and not reported elsewhere. These newly formed soliton solutions will be more beneficial in the various disciplines of ocean engineering, plasma physics, and nonlinear sciences.</p></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"8 3\",\"pages\":\"Pages 226-237\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013322000183\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013322000183","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

摘要

利用Lie对称分析、广义Riccati方程映射方法和改进Kudryashov方法,构造了具有幂律非线性和密度相关扩散的非线性对流扩散反应方程(NCDR)的多个新的解析孤子解。李对称分析是利用自变量约简的方法将高阶偏微分方程转化为常微分方程的有力方法之一。利用李群技术,我们得到了考虑的对流扩散反应方程的单参数不变变换,确定了方程和相应的向量。通过将控制方程的参数作为常数处理,所应用的方法得到了各种新的闭型解,包括反函数解、周期解、指数函数解、暗孤子、奇异孤子、亮-暗孤子组合、亮-暗孤子组合和暗-亮孤子。此外,利用广义Riccati方程的Bäcklund变换和修正Kudryashov方法,我们可以构造所考虑方程的多个孤子和其他解。本工作所得到的新解表明,所使用的方法在处理非线性方程方面是强大和有效的,并且这些解是解释许多生物和物理现象所必需的。将本文的解与文献中得到的解进行比较,我们发现我们的解是新的,在其他地方没有报道。这些新形成的孤子解将在海洋工程、等离子体物理和非线性科学的各个学科中更加有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of multiple new analytical soliton solutions and various dynamical behaviors to the nonlinear convection-diffusion-reaction equation with power-law nonlinearity and density-dependent diffusion via Lie symmetry approach together with a couple of integration approaches

By taking advantage of three different computational analytical methods: the Lie symmetry analysis, the generalized Riccati equation mapping approach, and the modified Kudryashov approach, we construct multiple new analytical soliton solutions to the nonlinear convection-diffusion-reaction equation (NCDR) with power-law nonlinearity and density-dependent diffusion. Lie symmetry analysis is one of the powerful techniques that reduce the higher-order partial differential equation into an ordinary differential equation by reduction of independent variables. By the Lie group technique, we obtain one-parameter invariant transformations, determining equations and corresponding vectors for the considered convection-diffusion-reaction equation. By treating the parameters of the governing equation as constants, the applied methods yield a variety of new closed-form solutions, including inverse function solutions, periodic solutions, exponential function solutions, dark solitons, singular solitons, combo bright-singular solitons, and the combine of bright-dark solitons and dark-bright solitons. Moreover, using the Bäcklund transformation of the generalized Riccati equation and modified Kudryashov method, we can construct multiple solitons and other solutions of the considered equation. The obtained new solutions of this work demonstrate that the used approaches are powerful and effective in dealing with nonlinear equations, and that these solutions are required to explain many biological and physical phenomena. Comparing our obtained solutions of this paper with the ones obtained in the literature, we see that our solutions are new and not reported elsewhere. These newly formed soliton solutions will be more beneficial in the various disciplines of ocean engineering, plasma physics, and nonlinear sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
19.70%
发文量
224
审稿时长
29 days
期刊介绍: The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science. JOES encourages the submission of papers covering various aspects of ocean engineering and science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信