{"title":"f(Q)$f(Q)$引力域中低质量间隙内暗能量恒星的存在","authors":"Piyali Bhar","doi":"10.1002/prop.202300074","DOIUrl":null,"url":null,"abstract":"<p>The object of this article is to study a new class of dark energy stars in the background of <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity by using the metric potentials proposed by Krori-Barua [J. Phys. A, Math. Gen. 8:508 (1975)]. To achieve the goal, a quadratic form of <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> as <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>a</mi>\n <msup>\n <mi>Q</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mi>Q</mi>\n </mrow>\n <annotation>$f(Q)=a{Q}^{2}+Q$</annotation>\n </semantics></math> is taken into account for the static spherically symmetric spacetime,`a' being a coupling parameter of <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity. The maximum allowable masses with corresponding radii have been obtained via <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>−</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$M-R$</annotation>\n </semantics></math> plots for <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>=</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mspace></mspace>\n <mn>5</mn>\n <mo>,</mo>\n <mspace></mspace>\n <mn>6</mn>\n <mo>,</mo>\n <mspace></mspace>\n <mn>7</mn>\n </mrow>\n <annotation>$a=4,\\, 5,\\, 6,\\, 7$</annotation>\n </semantics></math> and 8. The obtained maximum masses from our analysis are found in the range <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mn>1.8</mn>\n <mo>−</mo>\n <mn>2.61</mn>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <msub>\n <mi>M</mi>\n <mo>⊙</mo>\n </msub>\n </mrow>\n <annotation>$(1.8-2.61)\\hspace*{3.33333pt}{M}_{\\odot}$</annotation>\n </semantics></math>. For a smaller value of the coupling parameter ‘a’ associated with <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> gravity, more massive stars are found. The radii corresponding to the maximum masses also increase with decreasing ‘a’. In particular, when <math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>=</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$a=4$</annotation>\n </semantics></math>, the <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> theory can achieve a dark energy star of mass <math>\n <semantics>\n <mrow>\n <mn>2.61</mn>\n <mspace></mspace>\n <msub>\n <mi>M</mi>\n <mo>⊙</mo>\n </msub>\n </mrow>\n <annotation>$2.61\\hspace*{3.33333pt}{M}_{\\odot}$</annotation>\n </semantics></math> for certain specific combinations of model parameters. This obtained mass is located within a mass in the range of <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mn>2.5</mn>\n <mo>−</mo>\n <mn>2.67</mn>\n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n <msub>\n <mi>M</mi>\n <mo>⊙</mo>\n </msub>\n </mrow>\n <annotation>$(2.5-2.67)\\hspace*{3.33333pt}{M}_{\\odot}$</annotation>\n </semantics></math> and that can be a lighter object in the GW190814 event detected by LIGO/VIRGO experiments.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"71 10-11","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence of Dark Energy Stars within Lower Mass Gap in the Realm of \\n \\n \\n f\\n (\\n Q\\n )\\n \\n $f(Q)$\\n Gravity\",\"authors\":\"Piyali Bhar\",\"doi\":\"10.1002/prop.202300074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The object of this article is to study a new class of dark energy stars in the background of <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity by using the metric potentials proposed by Krori-Barua [J. Phys. A, Math. Gen. 8:508 (1975)]. To achieve the goal, a quadratic form of <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> as <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>a</mi>\\n <msup>\\n <mi>Q</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mi>Q</mi>\\n </mrow>\\n <annotation>$f(Q)=a{Q}^{2}+Q$</annotation>\\n </semantics></math> is taken into account for the static spherically symmetric spacetime,`a' being a coupling parameter of <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity. The maximum allowable masses with corresponding radii have been obtained via <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>−</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$M-R$</annotation>\\n </semantics></math> plots for <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>=</mo>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mn>5</mn>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mn>7</mn>\\n </mrow>\\n <annotation>$a=4,\\\\, 5,\\\\, 6,\\\\, 7$</annotation>\\n </semantics></math> and 8. The obtained maximum masses from our analysis are found in the range <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>1.8</mn>\\n <mo>−</mo>\\n <mn>2.61</mn>\\n <mo>)</mo>\\n </mrow>\\n <mspace></mspace>\\n <msub>\\n <mi>M</mi>\\n <mo>⊙</mo>\\n </msub>\\n </mrow>\\n <annotation>$(1.8-2.61)\\\\hspace*{3.33333pt}{M}_{\\\\odot}$</annotation>\\n </semantics></math>. For a smaller value of the coupling parameter ‘a’ associated with <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> gravity, more massive stars are found. The radii corresponding to the maximum masses also increase with decreasing ‘a’. In particular, when <math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>=</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$a=4$</annotation>\\n </semantics></math>, the <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>Q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$f(Q)$</annotation>\\n </semantics></math> theory can achieve a dark energy star of mass <math>\\n <semantics>\\n <mrow>\\n <mn>2.61</mn>\\n <mspace></mspace>\\n <msub>\\n <mi>M</mi>\\n <mo>⊙</mo>\\n </msub>\\n </mrow>\\n <annotation>$2.61\\\\hspace*{3.33333pt}{M}_{\\\\odot}$</annotation>\\n </semantics></math> for certain specific combinations of model parameters. This obtained mass is located within a mass in the range of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mn>2.5</mn>\\n <mo>−</mo>\\n <mn>2.67</mn>\\n <mo>)</mo>\\n </mrow>\\n <mspace></mspace>\\n <msub>\\n <mi>M</mi>\\n <mo>⊙</mo>\\n </msub>\\n </mrow>\\n <annotation>$(2.5-2.67)\\\\hspace*{3.33333pt}{M}_{\\\\odot}$</annotation>\\n </semantics></math> and that can be a lighter object in the GW190814 event detected by LIGO/VIRGO experiments.</p>\",\"PeriodicalId\":55150,\"journal\":{\"name\":\"Fortschritte Der Physik-Progress of Physics\",\"volume\":\"71 10-11\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fortschritte Der Physik-Progress of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300074\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Existence of Dark Energy Stars within Lower Mass Gap in the Realm of
f
(
Q
)
$f(Q)$
Gravity
The object of this article is to study a new class of dark energy stars in the background of gravity by using the metric potentials proposed by Krori-Barua [J. Phys. A, Math. Gen. 8:508 (1975)]. To achieve the goal, a quadratic form of as is taken into account for the static spherically symmetric spacetime,`a' being a coupling parameter of gravity. The maximum allowable masses with corresponding radii have been obtained via plots for and 8. The obtained maximum masses from our analysis are found in the range . For a smaller value of the coupling parameter ‘a’ associated with gravity, more massive stars are found. The radii corresponding to the maximum masses also increase with decreasing ‘a’. In particular, when , the theory can achieve a dark energy star of mass for certain specific combinations of model parameters. This obtained mass is located within a mass in the range of and that can be a lighter object in the GW190814 event detected by LIGO/VIRGO experiments.
期刊介绍:
The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013).
Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.