薄板侵入的节段尖端几何形状,1:尖端形状在控制传播路径中的作用的理论和数值模型

IF 2.5 Q2 Earth and Planetary Sciences
R. Walker, T. Stephens, C. Greenfield, S. Gill, D. Healy, S. Poppe
{"title":"薄板侵入的节段尖端几何形状,1:尖端形状在控制传播路径中的作用的理论和数值模型","authors":"R. Walker, T. Stephens, C. Greenfield, S. Gill, D. Healy, S. Poppe","doi":"10.30909/vol.04.02.189201","DOIUrl":null,"url":null,"abstract":"Inferences about sheet intrusion emplacement mechanisms have been built largely on field observations of intrusion tip zones: magmatic systems that did not grow beyond their observed state. Here we use finite element simulation of elliptical to superelliptical crack tips, representing observed natural sill segments, to show the effect of sill tip shape in controlling local stress concentrations, and the potential propagation pathways. Stress concentration magnitude and distribution is strongly affected by the position and magnitude of maximum tip curvature κmax. Elliptical tips concentrate stress in-plane with the sill, promoting coplanar growth. Superelliptical tips concentrate maximum tensile stress (σmax) and shear stress out-of-plane of the sill, which may promote non-coplanar growth, vertical thickening, or coplanar viscous indentation. We find that σmax =  Pe(1+ 2(√[aκmax]), where Pe is magma excess pressure and a is sill half length. At short length-scales, blunted tips locally generate large tensile stresses; at longer length-scales, elliptical-tipped sills become more efficient at concentrating stress than blunt sills.","PeriodicalId":33053,"journal":{"name":"Volcanica","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Segment tip geometry of sheet intrusions, I: Theory and numerical models for the role of tip shape in controlling propagation pathways\",\"authors\":\"R. Walker, T. Stephens, C. Greenfield, S. Gill, D. Healy, S. Poppe\",\"doi\":\"10.30909/vol.04.02.189201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferences about sheet intrusion emplacement mechanisms have been built largely on field observations of intrusion tip zones: magmatic systems that did not grow beyond their observed state. Here we use finite element simulation of elliptical to superelliptical crack tips, representing observed natural sill segments, to show the effect of sill tip shape in controlling local stress concentrations, and the potential propagation pathways. Stress concentration magnitude and distribution is strongly affected by the position and magnitude of maximum tip curvature κmax. Elliptical tips concentrate stress in-plane with the sill, promoting coplanar growth. Superelliptical tips concentrate maximum tensile stress (σmax) and shear stress out-of-plane of the sill, which may promote non-coplanar growth, vertical thickening, or coplanar viscous indentation. We find that σmax =  Pe(1+ 2(√[aκmax]), where Pe is magma excess pressure and a is sill half length. At short length-scales, blunted tips locally generate large tensile stresses; at longer length-scales, elliptical-tipped sills become more efficient at concentrating stress than blunt sills.\",\"PeriodicalId\":33053,\"journal\":{\"name\":\"Volcanica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volcanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30909/vol.04.02.189201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volcanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30909/vol.04.02.189201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 4

摘要

关于席状侵入侵位机制的推断主要建立在对侵入尖端带的实地观察之上:岩浆系统没有超过其观测状态。在这里,我们使用椭圆到超椭圆裂纹尖端的有限元模拟,代表观察到的自然底坎段,以显示底坎尖端形状在控制局部应力集中方面的影响,以及潜在的传播途径。最大尖端曲率κmax的位置和大小强烈影响应力集中的大小和分布。椭圆形尖端将应力集中在与门槛平面内,促进共面生长。超椭圆尖端集中了底坎平面外的最大拉应力(σmax)和剪切应力,这可能会促进非共面生长、垂直增厚或共面粘性压痕。我们发现σmax=Pe(1+2(√[aκmax]),其中Pe是岩浆超压,a是岩床的一半长度。在短长度尺度上,钝尖端局部产生较大的拉伸应力;在较长的长度尺度上,椭圆底梁比钝底梁更有效地集中应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segment tip geometry of sheet intrusions, I: Theory and numerical models for the role of tip shape in controlling propagation pathways
Inferences about sheet intrusion emplacement mechanisms have been built largely on field observations of intrusion tip zones: magmatic systems that did not grow beyond their observed state. Here we use finite element simulation of elliptical to superelliptical crack tips, representing observed natural sill segments, to show the effect of sill tip shape in controlling local stress concentrations, and the potential propagation pathways. Stress concentration magnitude and distribution is strongly affected by the position and magnitude of maximum tip curvature κmax. Elliptical tips concentrate stress in-plane with the sill, promoting coplanar growth. Superelliptical tips concentrate maximum tensile stress (σmax) and shear stress out-of-plane of the sill, which may promote non-coplanar growth, vertical thickening, or coplanar viscous indentation. We find that σmax =  Pe(1+ 2(√[aκmax]), where Pe is magma excess pressure and a is sill half length. At short length-scales, blunted tips locally generate large tensile stresses; at longer length-scales, elliptical-tipped sills become more efficient at concentrating stress than blunt sills.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Volcanica
Volcanica Earth and Planetary Sciences-Geology
CiteScore
4.40
自引率
0.00%
发文量
21
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信