Uri Brezner, M. Temkin
下载PDF
{"title":"Berkovich曲线最小野覆盖的提升问题","authors":"Uri Brezner, M. Temkin","doi":"10.1090/jag/728","DOIUrl":null,"url":null,"abstract":"<p>This work continues the study of residually wild morphisms <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f colon upper Y right-arrow upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>Y</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>X</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f\\colon Y\\to X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\delta _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> introduced in that work is the primary discrete invariant of such covers. When <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not residually tame, it provides a non-trivial enhancement of the classical invariant of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\">\n <mml:semantics>\n <mml:mi>f</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> consisting of morphisms of reductions <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f overTilde colon upper Y overTilde right-arrow upper X overTilde\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>Y</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>X</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde f\\colon \\widetilde Y\\to \\widetilde X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and metric skeletons <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma Subscript f Baseline colon normal upper Gamma Subscript upper Y Baseline right-arrow normal upper Gamma Subscript upper X Baseline\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>Y</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Gamma _f\\colon \\Gamma _Y\\to \\Gamma _X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this paper we interpret <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"delta Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\delta _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as the norm of the canonical trace section <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\tau _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the dualizing sheaf <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\omega _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and introduce a finer reduction invariant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau overTilde Subscript f\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\widetilde \\tau _f</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, which is (loosely speaking) a section of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript f overTilde Superscript log\">\n <mml:semantics>\n <mml:msubsup>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>log</mml:mi>\n </mml:mrow>\n </mml:msubsup>\n <mml:annotation encoding=\"application/x-tex\">\\omega _{\\widetilde f}^{\\operatorname {log}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis f overTilde comma normal upper Gamma Subscript f Baseline comma delta vertical-bar Subscript normal upper Gamma Sub Subscript upper Y Subscript Baseline comma tau overTilde Subscript f Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>f</mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>δ<!-- δ --></mml:mi>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi>\n <mml:mi>Y</mml:mi>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mi>f</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\widetilde f,\\Gamma _f,\\delta |_{\\Gamma _Y},\\widetilde \\tau _f)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/728","citationCount":"9","resultStr":"{\"title\":\"Lifting problem for minimally wild covers of Berkovich curves\",\"authors\":\"Uri Brezner, M. Temkin\",\"doi\":\"10.1090/jag/728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work continues the study of residually wild morphisms <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f colon upper Y right-arrow upper X\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>f</mml:mi>\\n <mml:mo>:<!-- : --></mml:mo>\\n <mml:mi>Y</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi>X</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f\\\\colon Y\\\\to X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta Subscript f\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta _f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> introduced in that work is the primary discrete invariant of such covers. When <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\">\\n <mml:semantics>\\n <mml:mi>f</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is not residually tame, it provides a non-trivial enhancement of the classical invariant of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f\\\">\\n <mml:semantics>\\n <mml:mi>f</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> consisting of morphisms of reductions <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f overTilde colon upper Y overTilde right-arrow upper X overTilde\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>f</mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>:<!-- : --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>Y</mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>X</mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widetilde f\\\\colon \\\\widetilde Y\\\\to \\\\widetilde X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and metric skeletons <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma Subscript f Baseline colon normal upper Gamma Subscript upper Y Baseline right-arrow normal upper Gamma Subscript upper X Baseline\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:mo>:<!-- : --></mml:mo>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mi>Y</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mi>X</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma _f\\\\colon \\\\Gamma _Y\\\\to \\\\Gamma _X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In this paper we interpret <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"delta Subscript f\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\delta _f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> as the norm of the canonical trace section <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau Subscript f\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau _f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the dualizing sheaf <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega Subscript f\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega _f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and introduce a finer reduction invariant <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau overTilde Subscript f\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widetilde \\\\tau _f</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, which is (loosely speaking) a section of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"omega Subscript f overTilde Superscript log\\\">\\n <mml:semantics>\\n <mml:msubsup>\\n <mml:mi>ω<!-- ω --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>f</mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>log</mml:mi>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\omega _{\\\\widetilde f}^{\\\\operatorname {log}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis f overTilde comma normal upper Gamma Subscript f Baseline comma delta vertical-bar Subscript normal upper Gamma Sub Subscript upper Y Subscript Baseline comma tau overTilde Subscript f Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>f</mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:mi>δ<!-- δ --></mml:mi>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">Γ<!-- Γ --></mml:mi>\\n <mml:mi>Y</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mi>f</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\widetilde f,\\\\Gamma _f,\\\\delta |_{\\\\Gamma _Y},\\\\widetilde \\\\tau _f)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jag/728\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/728\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/728","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
引用
批量引用