Mingqiang Lin , Yuqiang You , Jinhao Meng , Wei Wang , Ji Wu , Daniel-Ioan Stroe
{"title":"基于合成数据集和深度学习的锂离子电池退化轨迹早期预测","authors":"Mingqiang Lin , Yuqiang You , Jinhao Meng , Wei Wang , Ji Wu , Daniel-Ioan Stroe","doi":"10.1016/j.jechem.2023.06.036","DOIUrl":null,"url":null,"abstract":"<div><p>Knowing the long-term degradation trajectory of Lithium-ion (Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system (BESS) in reality. Previous battery health diagnosis methods focus on capacity and state of health (SOH) estimation which can receive only the short-term health status of the cell. This paper proposes a novel degradation trajectory prediction method with synthetic dataset and deep learning, which enables to grasp the characterization of the cell’s health at a very early stage of Li-ion battery usage. A transferred convolutional neural network (CNN) is chosen to finalize the early prediction target, and the polynomial function based synthetic dataset generation strategy is designed to reduce the costly data collection procedure in real application. In this thread, the proposed method needs one full lifespan data to predict the overall degradation trajectories of other cells. With only the full lifespan cycling data from 4 cells and 100 cycling data from each cell in experimental validation, the proposed method shows a good prediction accuracy on a dataset with more than 100 commercial Li-ion batteries.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"85 ","pages":"Pages 534-546"},"PeriodicalIF":13.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning\",\"authors\":\"Mingqiang Lin , Yuqiang You , Jinhao Meng , Wei Wang , Ji Wu , Daniel-Ioan Stroe\",\"doi\":\"10.1016/j.jechem.2023.06.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Knowing the long-term degradation trajectory of Lithium-ion (Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system (BESS) in reality. Previous battery health diagnosis methods focus on capacity and state of health (SOH) estimation which can receive only the short-term health status of the cell. This paper proposes a novel degradation trajectory prediction method with synthetic dataset and deep learning, which enables to grasp the characterization of the cell’s health at a very early stage of Li-ion battery usage. A transferred convolutional neural network (CNN) is chosen to finalize the early prediction target, and the polynomial function based synthetic dataset generation strategy is designed to reduce the costly data collection procedure in real application. In this thread, the proposed method needs one full lifespan data to predict the overall degradation trajectories of other cells. With only the full lifespan cycling data from 4 cells and 100 cycling data from each cell in experimental validation, the proposed method shows a good prediction accuracy on a dataset with more than 100 commercial Li-ion batteries.</p></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"85 \",\"pages\":\"Pages 534-546\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209549562300387X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562300387X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning
Knowing the long-term degradation trajectory of Lithium-ion (Li-ion) battery in its early usage stage is critical for the maintenance of the battery energy storage system (BESS) in reality. Previous battery health diagnosis methods focus on capacity and state of health (SOH) estimation which can receive only the short-term health status of the cell. This paper proposes a novel degradation trajectory prediction method with synthetic dataset and deep learning, which enables to grasp the characterization of the cell’s health at a very early stage of Li-ion battery usage. A transferred convolutional neural network (CNN) is chosen to finalize the early prediction target, and the polynomial function based synthetic dataset generation strategy is designed to reduce the costly data collection procedure in real application. In this thread, the proposed method needs one full lifespan data to predict the overall degradation trajectories of other cells. With only the full lifespan cycling data from 4 cells and 100 cycling data from each cell in experimental validation, the proposed method shows a good prediction accuracy on a dataset with more than 100 commercial Li-ion batteries.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy