{"title":"粘滞对振荡旋转液滴频移的影响","authors":"Lin Feng, Wan-Yuan Shi","doi":"10.1007/s12217-023-10052-1","DOIUrl":null,"url":null,"abstract":"<div><p>For an inviscid, spherical, infinitesimal-amplitude oscillating droplet, the surface tension is obtained by the oscillation frequency based on the linear theory. In reality, however, it is not fully applicable due to the severe presuppositions and frequency shift appears which introduces non-ignorable measurement errors in surface tension. In this work, a series of three-dimensional simulations were conducted to investigate the influence of property ratio, oscillation amplitude, viscous effect as well as rotation rate on frequency shift of an oscillating droplet. With the increase of oscillation amplitude, negative frequency shift was observed while positive frequency shift appears with increasing rotation rate, during which the viscous dissipation played role of hindering it. An empirical formula was proposed to determine the frequency shift of an oscillating-rotating droplet and it is in good agreement with experimental results. With this work, it was expected that the measurement accuracy of surface tension of droplet can be further enhanced by considering the frequency shift induced by amplitude, rotation and viscous effect.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscous Effect on the Frequency Shift of an Oscillating-Rotating Droplet\",\"authors\":\"Lin Feng, Wan-Yuan Shi\",\"doi\":\"10.1007/s12217-023-10052-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an inviscid, spherical, infinitesimal-amplitude oscillating droplet, the surface tension is obtained by the oscillation frequency based on the linear theory. In reality, however, it is not fully applicable due to the severe presuppositions and frequency shift appears which introduces non-ignorable measurement errors in surface tension. In this work, a series of three-dimensional simulations were conducted to investigate the influence of property ratio, oscillation amplitude, viscous effect as well as rotation rate on frequency shift of an oscillating droplet. With the increase of oscillation amplitude, negative frequency shift was observed while positive frequency shift appears with increasing rotation rate, during which the viscous dissipation played role of hindering it. An empirical formula was proposed to determine the frequency shift of an oscillating-rotating droplet and it is in good agreement with experimental results. With this work, it was expected that the measurement accuracy of surface tension of droplet can be further enhanced by considering the frequency shift induced by amplitude, rotation and viscous effect.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10052-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10052-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Viscous Effect on the Frequency Shift of an Oscillating-Rotating Droplet
For an inviscid, spherical, infinitesimal-amplitude oscillating droplet, the surface tension is obtained by the oscillation frequency based on the linear theory. In reality, however, it is not fully applicable due to the severe presuppositions and frequency shift appears which introduces non-ignorable measurement errors in surface tension. In this work, a series of three-dimensional simulations were conducted to investigate the influence of property ratio, oscillation amplitude, viscous effect as well as rotation rate on frequency shift of an oscillating droplet. With the increase of oscillation amplitude, negative frequency shift was observed while positive frequency shift appears with increasing rotation rate, during which the viscous dissipation played role of hindering it. An empirical formula was proposed to determine the frequency shift of an oscillating-rotating droplet and it is in good agreement with experimental results. With this work, it was expected that the measurement accuracy of surface tension of droplet can be further enhanced by considering the frequency shift induced by amplitude, rotation and viscous effect.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology