{"title":"米克尔Möbius奇阶平面中的奇异斯坦纳链","authors":"N. Hungerbühler, Gideon Villiger","doi":"10.1515/advgeom-2020-0035","DOIUrl":null,"url":null,"abstract":"Abstract In the Euclidean plane, two circles that intersect or are tangent clearly do not carry a finite Steiner chain of circles. We show that such exotic Steiner chains exist in finite Miquelian Möbius planes of odd order. We obtain explicit conditions in terms of the order of the plane and the capacitance of the two carrier circles for the existence, length, and number of Steiner chains.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2020-0035","citationCount":"1","resultStr":"{\"title\":\"Exotic Steiner chains in Miquelian Möbius planes of odd order\",\"authors\":\"N. Hungerbühler, Gideon Villiger\",\"doi\":\"10.1515/advgeom-2020-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the Euclidean plane, two circles that intersect or are tangent clearly do not carry a finite Steiner chain of circles. We show that such exotic Steiner chains exist in finite Miquelian Möbius planes of odd order. We obtain explicit conditions in terms of the order of the plane and the capacitance of the two carrier circles for the existence, length, and number of Steiner chains.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2020-0035\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2020-0035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2020-0035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exotic Steiner chains in Miquelian Möbius planes of odd order
Abstract In the Euclidean plane, two circles that intersect or are tangent clearly do not carry a finite Steiner chain of circles. We show that such exotic Steiner chains exist in finite Miquelian Möbius planes of odd order. We obtain explicit conditions in terms of the order of the plane and the capacitance of the two carrier circles for the existence, length, and number of Steiner chains.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.