Cherice N Hill, Daniel Schmitt, Wornie Reed, Shawn M Arent, Laura P Sands, Robin M Queen
{"title":"与受伤风险相关的跑步和着陆措施的种族差异因性别而异。","authors":"Cherice N Hill, Daniel Schmitt, Wornie Reed, Shawn M Arent, Laura P Sands, Robin M Queen","doi":"10.1080/14763141.2022.2056075","DOIUrl":null,"url":null,"abstract":"<p><p>It is unknown whether running and landing mechanics differ between racial groups despite injury disparities between African Americans (AA) and white Americans (WA). This study aimed to identify potential racial differences in running and landing mechanics and understand whether anthropometric, strength, and health status factors contribute to these differences. Venous blood samples, anthropometry, lower-extremity strength, and health status assessments were collected (n = 84, 18-30y). Three-dimensional motion capture and force plate data were recorded during 7 running and 7 drop vertical jump trials. Racial effects were determined, and regression models evaluated explanatory factors. AA females ran with longer stance times (p = 0.003) than WA females, while AA males ran with smaller loading rates (p = 0.046) and larger peak vertical ground reaction forces (p = 0.036) than WA males. Frontal plane knee range of motion during landing was greater in AA females (p = 0.033) than WA females; larger waist circumference and weaker knee extension strength accounted for this significance. Although outcome measures were associated with physiologic, anthropometric, and activity measures, their explanatory power for race was ambiguous, except for knee range of motion in females. Modifiable factors explaining racial effects during landing in females are potential intervention targets to reduce racial health disparities in running and landing injuries.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":"1 1","pages":"2738-2756"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Racial differences in running and landing measures associated with injury risk vary by sex.\",\"authors\":\"Cherice N Hill, Daniel Schmitt, Wornie Reed, Shawn M Arent, Laura P Sands, Robin M Queen\",\"doi\":\"10.1080/14763141.2022.2056075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is unknown whether running and landing mechanics differ between racial groups despite injury disparities between African Americans (AA) and white Americans (WA). This study aimed to identify potential racial differences in running and landing mechanics and understand whether anthropometric, strength, and health status factors contribute to these differences. Venous blood samples, anthropometry, lower-extremity strength, and health status assessments were collected (n = 84, 18-30y). Three-dimensional motion capture and force plate data were recorded during 7 running and 7 drop vertical jump trials. Racial effects were determined, and regression models evaluated explanatory factors. AA females ran with longer stance times (p = 0.003) than WA females, while AA males ran with smaller loading rates (p = 0.046) and larger peak vertical ground reaction forces (p = 0.036) than WA males. Frontal plane knee range of motion during landing was greater in AA females (p = 0.033) than WA females; larger waist circumference and weaker knee extension strength accounted for this significance. Although outcome measures were associated with physiologic, anthropometric, and activity measures, their explanatory power for race was ambiguous, except for knee range of motion in females. Modifiable factors explaining racial effects during landing in females are potential intervention targets to reduce racial health disparities in running and landing injuries.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\"1 1\",\"pages\":\"2738-2756\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2022.2056075\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2022.2056075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Racial differences in running and landing measures associated with injury risk vary by sex.
It is unknown whether running and landing mechanics differ between racial groups despite injury disparities between African Americans (AA) and white Americans (WA). This study aimed to identify potential racial differences in running and landing mechanics and understand whether anthropometric, strength, and health status factors contribute to these differences. Venous blood samples, anthropometry, lower-extremity strength, and health status assessments were collected (n = 84, 18-30y). Three-dimensional motion capture and force plate data were recorded during 7 running and 7 drop vertical jump trials. Racial effects were determined, and regression models evaluated explanatory factors. AA females ran with longer stance times (p = 0.003) than WA females, while AA males ran with smaller loading rates (p = 0.046) and larger peak vertical ground reaction forces (p = 0.036) than WA males. Frontal plane knee range of motion during landing was greater in AA females (p = 0.033) than WA females; larger waist circumference and weaker knee extension strength accounted for this significance. Although outcome measures were associated with physiologic, anthropometric, and activity measures, their explanatory power for race was ambiguous, except for knee range of motion in females. Modifiable factors explaining racial effects during landing in females are potential intervention targets to reduce racial health disparities in running and landing injuries.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.