{"title":"着丝粒蛋白J (CENPJ)与Seckel综合征相关的一种新的泄漏剪接变异","authors":"Navneesh Yadav, Laxmi Kirola, Thenral S Geetha, Kirti Mittal, Jayarama Kadandale, Yuval Yogev, Ohad S. Birk, Neerja Gupta, Prahlad Balakrishnan, Manisha Jana, Meena Gupta, Madhulika Kabra, Bittianda Kuttapa Thelma","doi":"10.1111/ahg.12469","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in <i>CENPJ</i> (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of <i>CENPJ</i> in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known <i>CENPJ</i> function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of <i>CENPJ</i>-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.</p>\n </section>\n </div>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"86 5","pages":"245-256"},"PeriodicalIF":1.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel leaky splice variant in centromere protein J (CENPJ)-associated Seckel syndrome\",\"authors\":\"Navneesh Yadav, Laxmi Kirola, Thenral S Geetha, Kirti Mittal, Jayarama Kadandale, Yuval Yogev, Ohad S. Birk, Neerja Gupta, Prahlad Balakrishnan, Manisha Jana, Meena Gupta, Madhulika Kabra, Bittianda Kuttapa Thelma\",\"doi\":\"10.1111/ahg.12469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n \\n <p>Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in <i>CENPJ</i> (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of <i>CENPJ</i> in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known <i>CENPJ</i> function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of <i>CENPJ</i>-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8085,\"journal\":{\"name\":\"Annals of Human Genetics\",\"volume\":\"86 5\",\"pages\":\"245-256\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12469\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12469","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A novel leaky splice variant in centromere protein J (CENPJ)-associated Seckel syndrome
Primary microcephaly and Seckel syndrome are rare genetically and clinically heterogenous brain development disorders. Several exonic/splicing mutations are reported for these disorders to date, but ∼40% of all cases remain unexplained. We aimed to uncover the genetic correlate(s) in a family of multiple siblings with microcephaly. A novel homozygous intronic variant (NC_000013.10:g.25459823T>C) in CENPJ (13q12) segregating with all four affected male siblings was identified by exome sequencing and validated by targeted linkage approach (logarithm of the odds score 1.8 at θ 0.0). RT-PCR of CENPJ in affected siblings using their EBV derived cell lines showed aberrant transcripts suggestive of exon skipping confirmed by Sanger sequencing. Significantly reduced wild type transcript/protein in the affected siblings having the splice variant indicates a leaky gene expression of pathological relevance. Based on known CENPJ function, assessing for mitotic alterations revealed defect in centrosome duplication causing mono/multicentrosome(s) at prophase, delayed metaphase, and unequal chromosomal segregation in patient cells. Clinical features witnessed in this study expand the spectrum of CENPJ-associated primary microcephaly and Seckel syndrome. Furthermore, besides the importance of regulatory variants in classical monogenic disorders these findings provide new insights into splice site biology with possible implications for ASO-based therapies.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.