二自由度机械臂PID、FLC和滑模控制器设计的比较研究

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Mukti Tomar, Sunitha Mandava, N. Hemalatha, Veeravalli Ramakoteswara Rao, R. Mandava
{"title":"二自由度机械臂PID、FLC和滑模控制器设计的比较研究","authors":"Mukti Tomar, Sunitha Mandava, N. Hemalatha, Veeravalli Ramakoteswara Rao, R. Mandava","doi":"10.33889/ijmems.2023.8.1.006","DOIUrl":null,"url":null,"abstract":"Controlling the manipulators in a precise manner is a challenging task. To overcome this difficulty around the world, many researchers have developed various control algorithms but are not providing optimal results. To obtain the optimal results in the current research the authors designed a proportional, integral, and derivative (PID) controller, fuzzy logic controller (FLC), and sliding mode controller (SMC) for a 2-DOF manipulator. The concept of forward and inverse kinematics was initially solved after assigning the D-H parameters for each joint. The purpose of forward or direct kinematics is to obtain the position and orientation of the end effector. Further, the concept of inverse kinematics is used to estimate the joint angles. Later on, the Lagrange-Euler formulation was used to calculate the dynamics of the 2-DOF manipulator, which is required to estimate the torque required for each joint of the robotics arm. The main goal of this research problem is to optimize the angular error between the two successive events. Finally, the developed algorithm is compared with the existing algorithms such as PID and Fuzzy logic controller.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of PID, FLC and Sliding Mode Controller for 2-DOF Robotic Manipulator: A Comparative Study\",\"authors\":\"Mukti Tomar, Sunitha Mandava, N. Hemalatha, Veeravalli Ramakoteswara Rao, R. Mandava\",\"doi\":\"10.33889/ijmems.2023.8.1.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling the manipulators in a precise manner is a challenging task. To overcome this difficulty around the world, many researchers have developed various control algorithms but are not providing optimal results. To obtain the optimal results in the current research the authors designed a proportional, integral, and derivative (PID) controller, fuzzy logic controller (FLC), and sliding mode controller (SMC) for a 2-DOF manipulator. The concept of forward and inverse kinematics was initially solved after assigning the D-H parameters for each joint. The purpose of forward or direct kinematics is to obtain the position and orientation of the end effector. Further, the concept of inverse kinematics is used to estimate the joint angles. Later on, the Lagrange-Euler formulation was used to calculate the dynamics of the 2-DOF manipulator, which is required to estimate the torque required for each joint of the robotics arm. The main goal of this research problem is to optimize the angular error between the two successive events. Finally, the developed algorithm is compared with the existing algorithms such as PID and Fuzzy logic controller.\",\"PeriodicalId\":44185,\"journal\":{\"name\":\"International Journal of Mathematical Engineering and Management Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Engineering and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33889/ijmems.2023.8.1.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

精确地控制机械手是一项具有挑战性的任务。为了克服这一困难,世界各地的许多研究人员开发了各种控制算法,但都没有提供最优的结果。为了得到最优的结果,作者设计了比例、积分和导数(PID)控制器、模糊逻辑控制器(FLC)和滑模控制器(SMC)。在分配了每个关节的D-H参数后,初步求解了正运动学和逆运动学的概念。正运动学或正运动学的目的是获得末端执行器的位置和方向。进一步,利用逆运动学的概念对关节角进行估计。随后,采用拉格朗日-欧拉公式计算二自由度机械臂的动力学,该公式需要估计机器人手臂各关节所需的扭矩。本研究问题的主要目标是优化两个连续事件之间的角度误差。最后,将所提出的算法与现有的PID、模糊控制器等算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of PID, FLC and Sliding Mode Controller for 2-DOF Robotic Manipulator: A Comparative Study
Controlling the manipulators in a precise manner is a challenging task. To overcome this difficulty around the world, many researchers have developed various control algorithms but are not providing optimal results. To obtain the optimal results in the current research the authors designed a proportional, integral, and derivative (PID) controller, fuzzy logic controller (FLC), and sliding mode controller (SMC) for a 2-DOF manipulator. The concept of forward and inverse kinematics was initially solved after assigning the D-H parameters for each joint. The purpose of forward or direct kinematics is to obtain the position and orientation of the end effector. Further, the concept of inverse kinematics is used to estimate the joint angles. Later on, the Lagrange-Euler formulation was used to calculate the dynamics of the 2-DOF manipulator, which is required to estimate the torque required for each joint of the robotics arm. The main goal of this research problem is to optimize the angular error between the two successive events. Finally, the developed algorithm is compared with the existing algorithms such as PID and Fuzzy logic controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
6.20%
发文量
57
审稿时长
20 weeks
期刊介绍: IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信