相对Dehn函数,双曲嵌入子群和组合定理

Pub Date : 2023-08-25 DOI:10.1017/s0017089523000265
H. Bigdely, Eduardo Martínez-Pedroza
{"title":"相对Dehn函数,双曲嵌入子群和组合定理","authors":"H. Bigdely, Eduardo Martínez-Pedroza","doi":"10.1017/s0017089523000265","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Consider the following classes of pairs consisting of a group and a finite collection of subgroups:<jats:list list-type=\"bullet\">\n\t <jats:list-item>\n\t\t<jats:label>•</jats:label>\n\t\t<jats:p>\n\t\t <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline1.png\" />\n\t\t <jats:tex-math>\n$ \\mathcal{C}= \\left \\{ (G,\\mathcal{H}) \\mid \\text{$\\mathcal{H}$ is hyperbolically embedded in $G$} \\right \\}$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>\n\t\t</jats:p>\n\t </jats:list-item>\n\t <jats:list-item>\n\t\t<jats:label>•</jats:label>\n\t\t<jats:p>\n\t\t <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline2.png\" />\n\t\t <jats:tex-math>\n$ \\mathcal{D}= \\left \\{ (G,\\mathcal{H}) \\mid \\text{the relative Dehn function of $(G,\\mathcal{H})$ is well-defined} \\right \\} .$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>\n\t\t</jats:p>\n\t </jats:list-item>\n\t </jats:list></jats:p>\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline3.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a group that splits as a finite graph of groups such that each vertex group <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline4.png\" />\n\t\t<jats:tex-math>\n$G_v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is assigned a finite collection of subgroups <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline5.png\" />\n\t\t<jats:tex-math>\n$\\mathcal{H}_v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, and each edge group <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline6.png\" />\n\t\t<jats:tex-math>\n$G_e$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is conjugate to a subgroup of some <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline7.png\" />\n\t\t<jats:tex-math>\n$H\\in \\mathcal{H}_v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> if <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline8.png\" />\n\t\t<jats:tex-math>\n$e$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is adjacent to <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline9.png\" />\n\t\t<jats:tex-math>\n$v$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Then there is a finite collection of subgroups <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline10.png\" />\n\t\t<jats:tex-math>\n$\\mathcal{H}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline11.png\" />\n\t\t<jats:tex-math>\n$G$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> such that<jats:list list-type=\"number\">\n\t <jats:list-item>\n\t\t<jats:label>1.</jats:label>\n\t\t<jats:p>If each <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline12.png\" />\n\t\t <jats:tex-math>\n$(G_v, \\mathcal{H}_v)$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline13.png\" />\n\t\t <jats:tex-math>\n$\\mathcal C$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>, then <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline14.png\" />\n\t\t <jats:tex-math>\n$(G,\\mathcal{H})$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline15.png\" />\n\t\t <jats:tex-math>\n$\\mathcal C$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>.</jats:p>\n\t </jats:list-item>\n\t <jats:list-item>\n\t\t<jats:label>2.</jats:label>\n\t\t<jats:p>If each <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline16.png\" />\n\t\t <jats:tex-math>\n$(G_v, \\mathcal{H}_v)$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline17.png\" />\n\t\t <jats:tex-math>\n$\\mathcal D$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>, then <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline18.png\" />\n\t\t <jats:tex-math>\n$(G,\\mathcal{H})$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is in <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline19.png\" />\n\t\t <jats:tex-math>\n$\\mathcal D$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>.</jats:p>\n\t </jats:list-item>\n\t <jats:list-item>\n\t\t<jats:label>3.</jats:label>\n\t\t<jats:p>For any vertex <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline20.png\" />\n\t\t <jats:tex-math>\n$v$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> and for any <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline21.png\" />\n\t\t <jats:tex-math>\n$g\\in G_v$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>, the element <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline22.png\" />\n\t\t <jats:tex-math>\n$g$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is conjugate to an element in some <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline23.png\" />\n\t\t <jats:tex-math>\n$Q\\in \\mathcal{H}_v$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> if and only if <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline24.png\" />\n\t\t <jats:tex-math>\n$g$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula> is conjugate to an element in some <jats:inline-formula>\n\t\t <jats:alternatives>\n\t\t <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0017089523000265_inline25.png\" />\n\t\t <jats:tex-math>\n$H\\in \\mathcal{H}$\n</jats:tex-math>\n\t\t </jats:alternatives>\n\t\t </jats:inline-formula>.</jats:p>\n\t </jats:list-item>\n\t </jats:list></jats:p>\n\t <jats:p>That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.</jats:p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relative Dehn functions, hyperbolically embedded subgroups and combination theorems\",\"authors\":\"H. Bigdely, Eduardo Martínez-Pedroza\",\"doi\":\"10.1017/s0017089523000265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Consider the following classes of pairs consisting of a group and a finite collection of subgroups:<jats:list list-type=\\\"bullet\\\">\\n\\t <jats:list-item>\\n\\t\\t<jats:label>•</jats:label>\\n\\t\\t<jats:p>\\n\\t\\t <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline1.png\\\" />\\n\\t\\t <jats:tex-math>\\n$ \\\\mathcal{C}= \\\\left \\\\{ (G,\\\\mathcal{H}) \\\\mid \\\\text{$\\\\mathcal{H}$ is hyperbolically embedded in $G$} \\\\right \\\\}$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>\\n\\t\\t</jats:p>\\n\\t </jats:list-item>\\n\\t <jats:list-item>\\n\\t\\t<jats:label>•</jats:label>\\n\\t\\t<jats:p>\\n\\t\\t <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline2.png\\\" />\\n\\t\\t <jats:tex-math>\\n$ \\\\mathcal{D}= \\\\left \\\\{ (G,\\\\mathcal{H}) \\\\mid \\\\text{the relative Dehn function of $(G,\\\\mathcal{H})$ is well-defined} \\\\right \\\\} .$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>\\n\\t\\t</jats:p>\\n\\t </jats:list-item>\\n\\t </jats:list></jats:p>\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$G$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a group that splits as a finite graph of groups such that each vertex group <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$G_v$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is assigned a finite collection of subgroups <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathcal{H}_v$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, and each edge group <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$G_e$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is conjugate to a subgroup of some <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$H\\\\in \\\\mathcal{H}_v$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> if <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$e$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is adjacent to <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline9.png\\\" />\\n\\t\\t<jats:tex-math>\\n$v$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Then there is a finite collection of subgroups <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline10.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathcal{H}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline11.png\\\" />\\n\\t\\t<jats:tex-math>\\n$G$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> such that<jats:list list-type=\\\"number\\\">\\n\\t <jats:list-item>\\n\\t\\t<jats:label>1.</jats:label>\\n\\t\\t<jats:p>If each <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline12.png\\\" />\\n\\t\\t <jats:tex-math>\\n$(G_v, \\\\mathcal{H}_v)$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> is in <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline13.png\\\" />\\n\\t\\t <jats:tex-math>\\n$\\\\mathcal C$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>, then <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline14.png\\\" />\\n\\t\\t <jats:tex-math>\\n$(G,\\\\mathcal{H})$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> is in <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline15.png\\\" />\\n\\t\\t <jats:tex-math>\\n$\\\\mathcal C$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>.</jats:p>\\n\\t </jats:list-item>\\n\\t <jats:list-item>\\n\\t\\t<jats:label>2.</jats:label>\\n\\t\\t<jats:p>If each <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline16.png\\\" />\\n\\t\\t <jats:tex-math>\\n$(G_v, \\\\mathcal{H}_v)$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> is in <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline17.png\\\" />\\n\\t\\t <jats:tex-math>\\n$\\\\mathcal D$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>, then <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline18.png\\\" />\\n\\t\\t <jats:tex-math>\\n$(G,\\\\mathcal{H})$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> is in <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline19.png\\\" />\\n\\t\\t <jats:tex-math>\\n$\\\\mathcal D$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>.</jats:p>\\n\\t </jats:list-item>\\n\\t <jats:list-item>\\n\\t\\t<jats:label>3.</jats:label>\\n\\t\\t<jats:p>For any vertex <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline20.png\\\" />\\n\\t\\t <jats:tex-math>\\n$v$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> and for any <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline21.png\\\" />\\n\\t\\t <jats:tex-math>\\n$g\\\\in G_v$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>, the element <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline22.png\\\" />\\n\\t\\t <jats:tex-math>\\n$g$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> is conjugate to an element in some <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline23.png\\\" />\\n\\t\\t <jats:tex-math>\\n$Q\\\\in \\\\mathcal{H}_v$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> if and only if <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline24.png\\\" />\\n\\t\\t <jats:tex-math>\\n$g$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula> is conjugate to an element in some <jats:inline-formula>\\n\\t\\t <jats:alternatives>\\n\\t\\t <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0017089523000265_inline25.png\\\" />\\n\\t\\t <jats:tex-math>\\n$H\\\\in \\\\mathcal{H}$\\n</jats:tex-math>\\n\\t\\t </jats:alternatives>\\n\\t\\t </jats:inline-formula>.</jats:p>\\n\\t </jats:list-item>\\n\\t </jats:list></jats:p>\\n\\t <jats:p>That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.</jats:p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089523000265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0017089523000265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑以下由一个群和一组有限子群组成的对类:•$\mathcal{C}=\left\{\}.$设$G$是一个分裂为群的有限图的群,使得每个顶点群$G_v$都被分配有子群的有限集合$\mathcal{H}_v$,并且每个边群$G_e$与一些$H\in\mathcal的子群共轭{H}_v$if$e$与$v$相邻。则存在$G$的子群$\mathcal{H}$的有限集合,使得1.如果每个$(G_v,\mathcal{H}_v)$在$\mathcal C$中,那么$(G,\mathcal{H})$在$\athcal C$中。2.如果每个$(G_v,\mathcal{H}_v)$在$\mathcal D$中,则$(G,\mathcal{H})$在$\athcal D$中。3.对于任何顶点$v$和g_v$中的任何$g\,元素$g$与一些$Q\in\mathcal中的元素共轭{H}_v$当且仅当$g$与某个$H\in\mathcal{H}$中的元素共轭。边群不被假设为有限生成的,并且它们不一定属于相邻顶点的子群的外围集合,这是这项工作与文献中先前结果之间的主要区别。根据顶点群的相对Dehn函数,证明方法提供了相对Dehn功能的下界和上界。这些界推广和改进了文献中的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Relative Dehn functions, hyperbolically embedded subgroups and combination theorems
Consider the following classes of pairs consisting of a group and a finite collection of subgroups: $ \mathcal{C}= \left \{ (G,\mathcal{H}) \mid \text{$\mathcal{H}$ is hyperbolically embedded in $G$} \right \}$ $ \mathcal{D}= \left \{ (G,\mathcal{H}) \mid \text{the relative Dehn function of $(G,\mathcal{H})$ is well-defined} \right \} .$ Let $G$ be a group that splits as a finite graph of groups such that each vertex group $G_v$ is assigned a finite collection of subgroups $\mathcal{H}_v$ , and each edge group $G_e$ is conjugate to a subgroup of some $H\in \mathcal{H}_v$ if $e$ is adjacent to $v$ . Then there is a finite collection of subgroups $\mathcal{H}$ of $G$ such that 1. If each $(G_v, \mathcal{H}_v)$ is in $\mathcal C$ , then $(G,\mathcal{H})$ is in $\mathcal C$ . 2. If each $(G_v, \mathcal{H}_v)$ is in $\mathcal D$ , then $(G,\mathcal{H})$ is in $\mathcal D$ . 3. For any vertex $v$ and for any $g\in G_v$ , the element $g$ is conjugate to an element in some $Q\in \mathcal{H}_v$ if and only if $g$ is conjugate to an element in some $H\in \mathcal{H}$ . That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信