Duong Viet Thong, Xiao-Huan Li, Q. Dong, Hoang Van Thang, Luong Van Long
{"title":"求解实数Hilbert空间中变分不等式的自适应梯度方法","authors":"Duong Viet Thong, Xiao-Huan Li, Q. Dong, Hoang Van Thang, Luong Van Long","doi":"10.1515/ijnsns-2021-0459","DOIUrl":null,"url":null,"abstract":"Abstract The projection technique is a very important method and efficient for solving variational inequality problems. In this study, we developed the subgradient extragradient method for solving pseudomonotone variational inequality in real Hilbert spaces. Our first algorithm requires only computing one projection onto the feasible set per iteration and the strong convergence is proved without the prior knowledge of the Lipschitz constant as well as the sequentially weak continuity of the associated mapping. The second algorithm uses the linesearch procedure such that its convergence does not require the Lipschitz continuous condition of the variational inequality mapping. Finally, some numerical experiments are provided to demonstrate the advantages and efficiency of the proposed methods.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"917 - 937"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive extragradient methods for solving variational inequalities in real Hilbert spaces\",\"authors\":\"Duong Viet Thong, Xiao-Huan Li, Q. Dong, Hoang Van Thang, Luong Van Long\",\"doi\":\"10.1515/ijnsns-2021-0459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The projection technique is a very important method and efficient for solving variational inequality problems. In this study, we developed the subgradient extragradient method for solving pseudomonotone variational inequality in real Hilbert spaces. Our first algorithm requires only computing one projection onto the feasible set per iteration and the strong convergence is proved without the prior knowledge of the Lipschitz constant as well as the sequentially weak continuity of the associated mapping. The second algorithm uses the linesearch procedure such that its convergence does not require the Lipschitz continuous condition of the variational inequality mapping. Finally, some numerical experiments are provided to demonstrate the advantages and efficiency of the proposed methods.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"917 - 937\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0459\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0459","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Adaptive extragradient methods for solving variational inequalities in real Hilbert spaces
Abstract The projection technique is a very important method and efficient for solving variational inequality problems. In this study, we developed the subgradient extragradient method for solving pseudomonotone variational inequality in real Hilbert spaces. Our first algorithm requires only computing one projection onto the feasible set per iteration and the strong convergence is proved without the prior knowledge of the Lipschitz constant as well as the sequentially weak continuity of the associated mapping. The second algorithm uses the linesearch procedure such that its convergence does not require the Lipschitz continuous condition of the variational inequality mapping. Finally, some numerical experiments are provided to demonstrate the advantages and efficiency of the proposed methods.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.