广义不可传递骰子:模仿任意比赛

IF 1.1 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
E. Akin
{"title":"广义不可传递骰子:模仿任意比赛","authors":"E. Akin","doi":"10.3934/jdg.2020030","DOIUrl":null,"url":null,"abstract":"A generalized $N$-sided die is a random variable $D$ on a sample space of $N$ equally likely outcomes taking values in the set of positive integers. We say of independent $N$ sided dice $D_i, D_j$ that $D_i$ beats $D_j$, written $D_i \\to D_j$, if $Prob(D_i > D_j) > \\frac{1}{2} $. Examples are known of intransitive $6$-sided dice, i.e. $D_1 \\to D_2 \\to D_3$ but $D_3 \\to D_1$. A tournament of size $n$ is a choice of direction $i \\to j$ for each edge of the complete graph on $n$ vertices. We show that if $R$ is tournament on the set $\\{ 1, \\dots, n \\}$, then for sufficiently large $N$ there exist sets of independent $N$-sided dice $\\{ D_1, \\dots, D_n \\}$ such that $D_i \\to D_j$ if and only if $i \\to j$ in $R$.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Generalized intransitive dice: Mimicking an arbitrary tournament\",\"authors\":\"E. Akin\",\"doi\":\"10.3934/jdg.2020030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized $N$-sided die is a random variable $D$ on a sample space of $N$ equally likely outcomes taking values in the set of positive integers. We say of independent $N$ sided dice $D_i, D_j$ that $D_i$ beats $D_j$, written $D_i \\\\to D_j$, if $Prob(D_i > D_j) > \\\\frac{1}{2} $. Examples are known of intransitive $6$-sided dice, i.e. $D_1 \\\\to D_2 \\\\to D_3$ but $D_3 \\\\to D_1$. A tournament of size $n$ is a choice of direction $i \\\\to j$ for each edge of the complete graph on $n$ vertices. We show that if $R$ is tournament on the set $\\\\{ 1, \\\\dots, n \\\\}$, then for sufficiently large $N$ there exist sets of independent $N$-sided dice $\\\\{ D_1, \\\\dots, D_n \\\\}$ such that $D_i \\\\to D_j$ if and only if $i \\\\to j$ in $R$.\",\"PeriodicalId\":42722,\"journal\":{\"name\":\"Journal of Dynamics and Games\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/jdg.2020030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jdg.2020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8

摘要

广义$N$边模是$N$样本空间上的随机变量$D$,其结果取正整数集中的值的可能性相等。对于独立的$N$边骰子$D_i,D_j$,如果$Probe(D_i>D_j)>\frac{1}{2}$,则$D_i$胜过$D_j$。不及物$6$边骰子的例子是已知的,即$D_1\到D_2\到D_3$,但$D_3\到D_1$。大小为$n$的锦标赛是对$n$顶点上的完整图的每条边的方向$i\到j$的选择。我们证明了如果$R$是集合$\{1,\dots,n\}$上的锦标赛,那么对于足够大的$n$,存在独立的$n$sided骰子$\{D_1,\ddots,D_n\}$的集合,使得$D_i\to D_j$当且仅当$R$中的$i\to j$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized intransitive dice: Mimicking an arbitrary tournament
A generalized $N$-sided die is a random variable $D$ on a sample space of $N$ equally likely outcomes taking values in the set of positive integers. We say of independent $N$ sided dice $D_i, D_j$ that $D_i$ beats $D_j$, written $D_i \to D_j$, if $Prob(D_i > D_j) > \frac{1}{2} $. Examples are known of intransitive $6$-sided dice, i.e. $D_1 \to D_2 \to D_3$ but $D_3 \to D_1$. A tournament of size $n$ is a choice of direction $i \to j$ for each edge of the complete graph on $n$ vertices. We show that if $R$ is tournament on the set $\{ 1, \dots, n \}$, then for sufficiently large $N$ there exist sets of independent $N$-sided dice $\{ D_1, \dots, D_n \}$ such that $D_i \to D_j$ if and only if $i \to j$ in $R$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Dynamics and Games
Journal of Dynamics and Games MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.00
自引率
0.00%
发文量
26
期刊介绍: The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信