多数人认可的社会选择

IF 2.2 4区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Guy Barokas
{"title":"多数人认可的社会选择","authors":"Guy Barokas","doi":"10.1016/j.jmp.2022.102694","DOIUrl":null,"url":null,"abstract":"<div><p>This note axiomatically proposes a social choice rule called <em>majority approval</em>, which coincides with the simple majority rule when the latter is decisive (i.e., contains no top cycles), and otherwise coincides with approval voting (Brams and Fishburn, 1978) defined on the top cycle set. We compare our rule to other social choice rules that prioritize preference information over approval information, and show that it stands out for its appealing properties. In addition, we provide axiomatization for a version of majority approval that satisfies the Pareto criterion.</p></div>","PeriodicalId":50140,"journal":{"name":"Journal of Mathematical Psychology","volume":"109 ","pages":"Article 102694"},"PeriodicalIF":2.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Majority-approval social choice\",\"authors\":\"Guy Barokas\",\"doi\":\"10.1016/j.jmp.2022.102694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This note axiomatically proposes a social choice rule called <em>majority approval</em>, which coincides with the simple majority rule when the latter is decisive (i.e., contains no top cycles), and otherwise coincides with approval voting (Brams and Fishburn, 1978) defined on the top cycle set. We compare our rule to other social choice rules that prioritize preference information over approval information, and show that it stands out for its appealing properties. In addition, we provide axiomatization for a version of majority approval that satisfies the Pareto criterion.</p></div>\",\"PeriodicalId\":50140,\"journal\":{\"name\":\"Journal of Mathematical Psychology\",\"volume\":\"109 \",\"pages\":\"Article 102694\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022249622000384\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Psychology","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022249622000384","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

摘要

本论明理地提出了一种称为多数同意的社会选择规则,当后者是决定性的(即不包含顶部循环)时,它与简单多数规则一致,否则与顶部循环集上定义的批准投票(Brams和Fishburn, 1978)一致。我们将我们的规则与其他优先考虑偏好信息而不是批准信息的社会选择规则进行比较,并表明它因其吸引人的属性而脱颖而出。此外,我们为满足帕累托准则的多数批准版本提供了公理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Majority-approval social choice

This note axiomatically proposes a social choice rule called majority approval, which coincides with the simple majority rule when the latter is decisive (i.e., contains no top cycles), and otherwise coincides with approval voting (Brams and Fishburn, 1978) defined on the top cycle set. We compare our rule to other social choice rules that prioritize preference information over approval information, and show that it stands out for its appealing properties. In addition, we provide axiomatization for a version of majority approval that satisfies the Pareto criterion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Psychology
Journal of Mathematical Psychology 医学-数学跨学科应用
CiteScore
3.70
自引率
11.10%
发文量
37
审稿时长
20.2 weeks
期刊介绍: The Journal of Mathematical Psychology includes articles, monographs and reviews, notes and commentaries, and book reviews in all areas of mathematical psychology. Empirical and theoretical contributions are equally welcome. Areas of special interest include, but are not limited to, fundamental measurement and psychological process models, such as those based upon neural network or information processing concepts. A partial listing of substantive areas covered include sensation and perception, psychophysics, learning and memory, problem solving, judgment and decision-making, and motivation. The Journal of Mathematical Psychology is affiliated with the Society for Mathematical Psychology. Research Areas include: • Models for sensation and perception, learning, memory and thinking • Fundamental measurement and scaling • Decision making • Neural modeling and networks • Psychophysics and signal detection • Neuropsychological theories • Psycholinguistics • Motivational dynamics • Animal behavior • Psychometric theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信