{"title":"基于卷积神经网络算法的多字体英文电子处方识别","authors":"M. Mohammed, E. Mohammed, Mohammed S. Jarjees","doi":"10.1515/BAMS-2020-0021","DOIUrl":null,"url":null,"abstract":"Abstract The printed character recognition is an efficient and automatic method for inputting information to a computer nowadays that is used to translate the printed or handwritten images into an editable and readable text file. This paper aims to recognize a multifont and multisize of the English language printed word for a smart pharmacy purpose. The recognition system has been based on a convolution neural network (CNN) approach where line, word, and character are separately corrected, and then each of the separated characters is fed into the CNN algorithm for recognition purposes. The OpenCV open-source library has been used for preprocessing, which can segment English characters accurately and efficiently, and for recognition, the Keras library with the backend of TensorFlow has been used. The training and testing data sets have been designed to include 23 different fonts with six different sizes. The CNN algorithm achieves the highest accuracy of 96.6% comparing to the other state-of-the-art machine learning methods. The higher classification accuracy of the CNN approach shows that this type of algorithm is ideal for the English language printed word recognition. The highest error rate after testing the system using English electronic prescribing written with all proposed font-types is 0.23% in Georgia font.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/BAMS-2020-0021","citationCount":"8","resultStr":"{\"title\":\"Recognition of multifont English electronic prescribing based on convolution neural network algorithm\",\"authors\":\"M. Mohammed, E. Mohammed, Mohammed S. Jarjees\",\"doi\":\"10.1515/BAMS-2020-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The printed character recognition is an efficient and automatic method for inputting information to a computer nowadays that is used to translate the printed or handwritten images into an editable and readable text file. This paper aims to recognize a multifont and multisize of the English language printed word for a smart pharmacy purpose. The recognition system has been based on a convolution neural network (CNN) approach where line, word, and character are separately corrected, and then each of the separated characters is fed into the CNN algorithm for recognition purposes. The OpenCV open-source library has been used for preprocessing, which can segment English characters accurately and efficiently, and for recognition, the Keras library with the backend of TensorFlow has been used. The training and testing data sets have been designed to include 23 different fonts with six different sizes. The CNN algorithm achieves the highest accuracy of 96.6% comparing to the other state-of-the-art machine learning methods. The higher classification accuracy of the CNN approach shows that this type of algorithm is ideal for the English language printed word recognition. The highest error rate after testing the system using English electronic prescribing written with all proposed font-types is 0.23% in Georgia font.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/BAMS-2020-0021\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/BAMS-2020-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/BAMS-2020-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Recognition of multifont English electronic prescribing based on convolution neural network algorithm
Abstract The printed character recognition is an efficient and automatic method for inputting information to a computer nowadays that is used to translate the printed or handwritten images into an editable and readable text file. This paper aims to recognize a multifont and multisize of the English language printed word for a smart pharmacy purpose. The recognition system has been based on a convolution neural network (CNN) approach where line, word, and character are separately corrected, and then each of the separated characters is fed into the CNN algorithm for recognition purposes. The OpenCV open-source library has been used for preprocessing, which can segment English characters accurately and efficiently, and for recognition, the Keras library with the backend of TensorFlow has been used. The training and testing data sets have been designed to include 23 different fonts with six different sizes. The CNN algorithm achieves the highest accuracy of 96.6% comparing to the other state-of-the-art machine learning methods. The higher classification accuracy of the CNN approach shows that this type of algorithm is ideal for the English language printed word recognition. The highest error rate after testing the system using English electronic prescribing written with all proposed font-types is 0.23% in Georgia font.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.