{"title":"纳米材料检测农业和环境样品中植物激素的综合分析方法","authors":"Juhi Bhadresh Raval , Vaibhavkumar N. Mehta , Rakesh Kumar Singhal , Hirakendu Basu , Sanjay Jha , Suresh Kumar Kailasa","doi":"10.1016/j.teac.2023.e00205","DOIUrl":null,"url":null,"abstract":"<div><p><span>Hormones are an important class of biomolecules as they regulate the physiological responses in the living organisms. Recently, nanomaterials-based biosensors have been widely researched due to their outstanding merits like stabilty, selectivity, biocompatibility, facile synthetic approach, and cost-effectiveness. In this review, we cover in detail the recent advancements of nanomaterials<span> (carbon dots, carbon nanotubes, </span></span>metal nanoparticles<span>, metal oxides, metal-organic frameworks, metal nanoclusters<span> and quantum dots) in electrochemcial, colorimetric and fluorescence sensing of plant hormones. This review also provides a brief outline on the classificaiton of phytohormones and the sample preparation appraoches for the extraction of phytohormones prior to their identification by various analytical techniques. This review will focus on the selected research papers on nanomaterials as electrochemical, colorimetric and fluorescent sensors for the plant hormones detection from the last twelve years (i.e., 2011 −2023). Nanomaterials integrated analytical techniques (electrochemcial, colorimetric and fluorescence) offer to detect plat hormones with lower detection limits (fM to µM and ng/mL to pg/mL). Importantly, nanomaterials integrated analytical strategies have been successfully detected plant hormones with minimal volumes and sample preparations. The various advantages and limitations of techniques have been also overviewed. The challenges and future perspectives of nanomaterials-based electro- and optical sensors for the analysis of plant hormones are discussed in detail.</span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"39 ","pages":"Article e00205"},"PeriodicalIF":11.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights of nanomaterials integrated analytical approaches for detection of plant hormones in agricultural and environmental samples\",\"authors\":\"Juhi Bhadresh Raval , Vaibhavkumar N. Mehta , Rakesh Kumar Singhal , Hirakendu Basu , Sanjay Jha , Suresh Kumar Kailasa\",\"doi\":\"10.1016/j.teac.2023.e00205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Hormones are an important class of biomolecules as they regulate the physiological responses in the living organisms. Recently, nanomaterials-based biosensors have been widely researched due to their outstanding merits like stabilty, selectivity, biocompatibility, facile synthetic approach, and cost-effectiveness. In this review, we cover in detail the recent advancements of nanomaterials<span> (carbon dots, carbon nanotubes, </span></span>metal nanoparticles<span>, metal oxides, metal-organic frameworks, metal nanoclusters<span> and quantum dots) in electrochemcial, colorimetric and fluorescence sensing of plant hormones. This review also provides a brief outline on the classificaiton of phytohormones and the sample preparation appraoches for the extraction of phytohormones prior to their identification by various analytical techniques. This review will focus on the selected research papers on nanomaterials as electrochemical, colorimetric and fluorescent sensors for the plant hormones detection from the last twelve years (i.e., 2011 −2023). Nanomaterials integrated analytical techniques (electrochemcial, colorimetric and fluorescence) offer to detect plat hormones with lower detection limits (fM to µM and ng/mL to pg/mL). Importantly, nanomaterials integrated analytical strategies have been successfully detected plant hormones with minimal volumes and sample preparations. The various advantages and limitations of techniques have been also overviewed. The challenges and future perspectives of nanomaterials-based electro- and optical sensors for the analysis of plant hormones are discussed in detail.</span></span></p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"39 \",\"pages\":\"Article e00205\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158823000119\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158823000119","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Insights of nanomaterials integrated analytical approaches for detection of plant hormones in agricultural and environmental samples
Hormones are an important class of biomolecules as they regulate the physiological responses in the living organisms. Recently, nanomaterials-based biosensors have been widely researched due to their outstanding merits like stabilty, selectivity, biocompatibility, facile synthetic approach, and cost-effectiveness. In this review, we cover in detail the recent advancements of nanomaterials (carbon dots, carbon nanotubes, metal nanoparticles, metal oxides, metal-organic frameworks, metal nanoclusters and quantum dots) in electrochemcial, colorimetric and fluorescence sensing of plant hormones. This review also provides a brief outline on the classificaiton of phytohormones and the sample preparation appraoches for the extraction of phytohormones prior to their identification by various analytical techniques. This review will focus on the selected research papers on nanomaterials as electrochemical, colorimetric and fluorescent sensors for the plant hormones detection from the last twelve years (i.e., 2011 −2023). Nanomaterials integrated analytical techniques (electrochemcial, colorimetric and fluorescence) offer to detect plat hormones with lower detection limits (fM to µM and ng/mL to pg/mL). Importantly, nanomaterials integrated analytical strategies have been successfully detected plant hormones with minimal volumes and sample preparations. The various advantages and limitations of techniques have been also overviewed. The challenges and future perspectives of nanomaterials-based electro- and optical sensors for the analysis of plant hormones are discussed in detail.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.