{"title":"铑配合物通过C-H键活化催化苯甲醛衍生物与苯乙炔的氧化偶联","authors":"Xinyi Zhao, Hongge Jia, Q. Wang, Heming Song, Yanan Tang, Liqun Ma, Yongqian Shi, Guoxing Yang, Yazhen Wang, Y. Zang, Shuangping Xu","doi":"10.1515/hc-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports the use of rhodium (Rh) catalysts for the oxidative coupling reaction between phenylacetylene and benzaldehyde derivatives via C-H bond activation. These reactions were catalyzed by Rh(l-amino acid)(cod) (the l-amino acid is l-phenylalanine, l-valine or l-proline; cod is 1,5-cyclooctadiene) to obtain chromones in 12.7–88.3% yield. These new Rh catalysts have excellent activity for the coupling reaction between phenylacetylene and different benzaldehyde derivatives. It was found that the electronic effects of the benzaldehyde derivative substituent affected the reaction yield, which is in accordance with the proposed mechanism.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"26 1","pages":"20 - 25"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/hc-2020-0004","citationCount":"1","resultStr":"{\"title\":\"The oxidative coupling between benzaldehyde derivatives and phenylacetylene catalyzed by rhodium complexes via C-H bond activation\",\"authors\":\"Xinyi Zhao, Hongge Jia, Q. Wang, Heming Song, Yanan Tang, Liqun Ma, Yongqian Shi, Guoxing Yang, Yazhen Wang, Y. Zang, Shuangping Xu\",\"doi\":\"10.1515/hc-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper reports the use of rhodium (Rh) catalysts for the oxidative coupling reaction between phenylacetylene and benzaldehyde derivatives via C-H bond activation. These reactions were catalyzed by Rh(l-amino acid)(cod) (the l-amino acid is l-phenylalanine, l-valine or l-proline; cod is 1,5-cyclooctadiene) to obtain chromones in 12.7–88.3% yield. These new Rh catalysts have excellent activity for the coupling reaction between phenylacetylene and different benzaldehyde derivatives. It was found that the electronic effects of the benzaldehyde derivative substituent affected the reaction yield, which is in accordance with the proposed mechanism.\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"26 1\",\"pages\":\"20 - 25\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/hc-2020-0004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2020-0004\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0004","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
The oxidative coupling between benzaldehyde derivatives and phenylacetylene catalyzed by rhodium complexes via C-H bond activation
Abstract This paper reports the use of rhodium (Rh) catalysts for the oxidative coupling reaction between phenylacetylene and benzaldehyde derivatives via C-H bond activation. These reactions were catalyzed by Rh(l-amino acid)(cod) (the l-amino acid is l-phenylalanine, l-valine or l-proline; cod is 1,5-cyclooctadiene) to obtain chromones in 12.7–88.3% yield. These new Rh catalysts have excellent activity for the coupling reaction between phenylacetylene and different benzaldehyde derivatives. It was found that the electronic effects of the benzaldehyde derivative substituent affected the reaction yield, which is in accordance with the proposed mechanism.
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.