圆柱采样约束下基于RRT的水下机器人运动规划算法

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fujie Yu, Huaqing Shang, Qilong Zhu, Hansheng Zhang, Yuan Chen
{"title":"圆柱采样约束下基于RRT的水下机器人运动规划算法","authors":"Fujie Yu,&nbsp;Huaqing Shang,&nbsp;Qilong Zhu,&nbsp;Hansheng Zhang,&nbsp;Yuan Chen","doi":"10.1007/s10514-023-10083-y","DOIUrl":null,"url":null,"abstract":"<div><p>Quickly finding high-quality paths is of great significance for autonomous underwater vehicles (AUVs) in path planning problems. In this paper, we present a cylinder-based heuristic rapidly exploring random tree (Cyl-HRRT*) algorithm, which is the extension version of the path planner presented in our previous publication. Cyl-HRRT* increases the likelihood of sampling states that can improve the current solution by biasing the states into a cylindrical subset, thus providing better paths for AUVs. A direct greedy sampling method is proposed to explore the space more efficiently and accelerate convergence to the optimum. To reasonably balance the optimization accuracy and the number of iterations, a beacon-based adaptive optimization strategy is presented, which adaptively establishes a cylindrical subset for the next focused sampling according to the current path. Furthermore, the Cyl-HRRT* algorithm is shown to be probabilistically complete and asymptotically optimal. Finally, the Cyl-HRRT* algorithm is comprehensively tested in both simulations and real-world experiments. The results reveal that the path generated by the Cyl-HRRT* algorithm greatly improves the power savings and mobility of the AUV.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10083-y.pdf","citationCount":"3","resultStr":"{\"title\":\"An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints\",\"authors\":\"Fujie Yu,&nbsp;Huaqing Shang,&nbsp;Qilong Zhu,&nbsp;Hansheng Zhang,&nbsp;Yuan Chen\",\"doi\":\"10.1007/s10514-023-10083-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quickly finding high-quality paths is of great significance for autonomous underwater vehicles (AUVs) in path planning problems. In this paper, we present a cylinder-based heuristic rapidly exploring random tree (Cyl-HRRT*) algorithm, which is the extension version of the path planner presented in our previous publication. Cyl-HRRT* increases the likelihood of sampling states that can improve the current solution by biasing the states into a cylindrical subset, thus providing better paths for AUVs. A direct greedy sampling method is proposed to explore the space more efficiently and accelerate convergence to the optimum. To reasonably balance the optimization accuracy and the number of iterations, a beacon-based adaptive optimization strategy is presented, which adaptively establishes a cylindrical subset for the next focused sampling according to the current path. Furthermore, the Cyl-HRRT* algorithm is shown to be probabilistically complete and asymptotically optimal. Finally, the Cyl-HRRT* algorithm is comprehensively tested in both simulations and real-world experiments. The results reveal that the path generated by the Cyl-HRRT* algorithm greatly improves the power savings and mobility of the AUV.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-023-10083-y.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10083-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10083-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

快速找到高质量的路径对于自主水下机器人(AUV)在路径规划问题中具有重要意义。在本文中,我们提出了一种基于圆柱体的启发式快速探索随机树(Cyl-HRRT*)算法,它是我们在先前出版物中提出的路径规划器的扩展版本。Cyl HRRT*增加了采样状态的可能性,可以通过将状态偏置为圆柱形子集来改进当前解决方案,从而为AUV提供更好的路径。为了更有效地探索空间,并加速收敛到最优,提出了一种直接贪婪采样方法。为了合理地平衡优化精度和迭代次数,提出了一种基于信标的自适应优化策略,该策略根据当前路径自适应地为下一次聚焦采样建立圆柱子集。此外,Cyl-HRRT*算法被证明是概率完全的和渐近最优的。最后,Cyl-HRRT*算法在仿真和真实世界的实验中得到了全面的测试。结果表明,Cyl-HRRT*算法生成的路径大大提高了AUV的功耗和移动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints

An efficient RRT-based motion planning algorithm for autonomous underwater vehicles under cylindrical sampling constraints

Quickly finding high-quality paths is of great significance for autonomous underwater vehicles (AUVs) in path planning problems. In this paper, we present a cylinder-based heuristic rapidly exploring random tree (Cyl-HRRT*) algorithm, which is the extension version of the path planner presented in our previous publication. Cyl-HRRT* increases the likelihood of sampling states that can improve the current solution by biasing the states into a cylindrical subset, thus providing better paths for AUVs. A direct greedy sampling method is proposed to explore the space more efficiently and accelerate convergence to the optimum. To reasonably balance the optimization accuracy and the number of iterations, a beacon-based adaptive optimization strategy is presented, which adaptively establishes a cylindrical subset for the next focused sampling according to the current path. Furthermore, the Cyl-HRRT* algorithm is shown to be probabilistically complete and asymptotically optimal. Finally, the Cyl-HRRT* algorithm is comprehensively tested in both simulations and real-world experiments. The results reveal that the path generated by the Cyl-HRRT* algorithm greatly improves the power savings and mobility of the AUV.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信