{"title":"MOS晶体管中差分有效迁移率的新概念","authors":"K. Bennamane, G. Ghibaudo","doi":"10.1155/2019/5716230","DOIUrl":null,"url":null,"abstract":"A new concept of differential effective mobility is proposed. It characterizes the effective mobility of an increment of drain current resulting from a small increase of inversion charge in MOSFET channel. It allows us to show that the effective mobility can be described by a local electric field approach and not entirely by an effective electric field model.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/5716230","citationCount":"2","resultStr":"{\"title\":\"New Concept of Differential Effective Mobility in MOS Transistors\",\"authors\":\"K. Bennamane, G. Ghibaudo\",\"doi\":\"10.1155/2019/5716230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new concept of differential effective mobility is proposed. It characterizes the effective mobility of an increment of drain current resulting from a small increase of inversion charge in MOSFET channel. It allows us to show that the effective mobility can be described by a local electric field approach and not entirely by an effective electric field model.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2019/5716230\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2019/5716230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/5716230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
New Concept of Differential Effective Mobility in MOS Transistors
A new concept of differential effective mobility is proposed. It characterizes the effective mobility of an increment of drain current resulting from a small increase of inversion charge in MOSFET channel. It allows us to show that the effective mobility can be described by a local electric field approach and not entirely by an effective electric field model.
期刊介绍:
Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.