基于神经嵌入特征提取和小规模机器学习技术的开心果物种分类与分析

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
S. Sathish Kumar, A. Sigappi, G. Thomas, Y. Harold Robinson, S. Raja
{"title":"基于神经嵌入特征提取和小规模机器学习技术的开心果物种分类与分析","authors":"S. Sathish Kumar, A. Sigappi, G. Thomas, Y. Harold Robinson, S. Raja","doi":"10.1142/s0219467824500323","DOIUrl":null,"url":null,"abstract":"Pistachios are a tremendous source of fiber, protein, antioxidants, healthy fats, and other minerals like thiamine and vitamin B6. They may help people lose weight, lower cholesterol, and blood sugar levels, lead to better gut, eye, and blood vessel health. The two main varieties farmed and exported in Turkey are kirmizi and siirt pistachios. Understanding how to detect the type of pistachio is essential as it plays an important role in trade. In this study, it is aimed to classify these two types of pistachios and analyze the performance of the various small-scale machine learning algorithms. 2148 sample images for these two kinds of pistachios were considered for this study which includes 1232 of Kirmizi type and 916 of Siirt type. In order to evaluate the model fairly, stratified random sampling is applied on the dataset. For feature extraction, we used deep neural network-based embeddings to acquire the vector representation of images. The classification of pistachio species is then performed using a variety of small-scale machine learning algorithms29,31 that have been trained using these feature vectors. As a result of this study, the success rate obtained from Logistic Regression through features extracted from the penultimate layer of Painters network is 97.20%. The performance of the models was evaluated through Class Accuracy, Precision, Recall, F1 Score, and values of Area under the curve (AUC). The outcomes show that the method suggested in this study may quickly and precisely identify different varieties of pistachios while also meeting agricultural production needs.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Analysis of Pistachio Species Through Neural Embedding-Based Feature Extraction and Small-Scale Machine Learning Techniques\",\"authors\":\"S. Sathish Kumar, A. Sigappi, G. Thomas, Y. Harold Robinson, S. Raja\",\"doi\":\"10.1142/s0219467824500323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pistachios are a tremendous source of fiber, protein, antioxidants, healthy fats, and other minerals like thiamine and vitamin B6. They may help people lose weight, lower cholesterol, and blood sugar levels, lead to better gut, eye, and blood vessel health. The two main varieties farmed and exported in Turkey are kirmizi and siirt pistachios. Understanding how to detect the type of pistachio is essential as it plays an important role in trade. In this study, it is aimed to classify these two types of pistachios and analyze the performance of the various small-scale machine learning algorithms. 2148 sample images for these two kinds of pistachios were considered for this study which includes 1232 of Kirmizi type and 916 of Siirt type. In order to evaluate the model fairly, stratified random sampling is applied on the dataset. For feature extraction, we used deep neural network-based embeddings to acquire the vector representation of images. The classification of pistachio species is then performed using a variety of small-scale machine learning algorithms29,31 that have been trained using these feature vectors. As a result of this study, the success rate obtained from Logistic Regression through features extracted from the penultimate layer of Painters network is 97.20%. The performance of the models was evaluated through Class Accuracy, Precision, Recall, F1 Score, and values of Area under the curve (AUC). The outcomes show that the method suggested in this study may quickly and precisely identify different varieties of pistachios while also meeting agricultural production needs.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

开心果富含纤维、蛋白质、抗氧化剂、健康脂肪和其他矿物质,如硫胺素和维生素B6。它们可以帮助人们减肥,降低胆固醇和血糖水平,改善肠道、眼睛和血管的健康。土耳其种植和出口的两个主要品种是kirmizi和siirt开心果。了解如何检测开心果的类型是至关重要的,因为它在贸易中起着重要作用。在本研究中,旨在对这两种开心果进行分类,并分析各种小规模机器学习算法的性能。本研究选取了这两种开心果的2148张样本图像,其中Kirmizi型1232张,Siirt型916张。为了公平地评价模型,对数据集进行分层随机抽样。对于特征提取,我们使用基于深度神经网络的嵌入来获取图像的向量表示。然后使用使用这些特征向量训练的各种小型机器学习算法进行开心果物种的分类。通过本研究,从painter网络的倒数第二层提取特征,通过Logistic回归得到的成功率为97.20%。通过分类准确率、精确度、召回率、F1分数和曲线下面积(Area under The curve, AUC)值来评价模型的性能。结果表明,该方法在满足农业生产需求的同时,可以快速、准确地鉴定不同品种的开心果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and Analysis of Pistachio Species Through Neural Embedding-Based Feature Extraction and Small-Scale Machine Learning Techniques
Pistachios are a tremendous source of fiber, protein, antioxidants, healthy fats, and other minerals like thiamine and vitamin B6. They may help people lose weight, lower cholesterol, and blood sugar levels, lead to better gut, eye, and blood vessel health. The two main varieties farmed and exported in Turkey are kirmizi and siirt pistachios. Understanding how to detect the type of pistachio is essential as it plays an important role in trade. In this study, it is aimed to classify these two types of pistachios and analyze the performance of the various small-scale machine learning algorithms. 2148 sample images for these two kinds of pistachios were considered for this study which includes 1232 of Kirmizi type and 916 of Siirt type. In order to evaluate the model fairly, stratified random sampling is applied on the dataset. For feature extraction, we used deep neural network-based embeddings to acquire the vector representation of images. The classification of pistachio species is then performed using a variety of small-scale machine learning algorithms29,31 that have been trained using these feature vectors. As a result of this study, the success rate obtained from Logistic Regression through features extracted from the penultimate layer of Painters network is 97.20%. The performance of the models was evaluated through Class Accuracy, Precision, Recall, F1 Score, and values of Area under the curve (AUC). The outcomes show that the method suggested in this study may quickly and precisely identify different varieties of pistachios while also meeting agricultural production needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信