土壤改良剂用高吸水性聚合物的保水特性

IF 2.9 Q2 SOIL SCIENCE
Masamichi Takahashi, I. Kosaka, S. Ohta
{"title":"土壤改良剂用高吸水性聚合物的保水特性","authors":"Masamichi Takahashi, I. Kosaka, S. Ohta","doi":"10.3390/soilsystems7020058","DOIUrl":null,"url":null,"abstract":"Superabsorbent polymers (SAPs) are used as a soil amendment for retaining water, but suitable methods for the application of SAPs have not yet been developed. Here, we characterized a variety of soil–SAP mixtures prepared using four different types of SAP in terms of their water absorption and release characteristics. The teabag method was applied to characterize the soil–SAP mixtures, except for measurements of the matric potential. The results showed that the variations in water absorbency among the four SAPs in isolation became insignificant when they were mixed with sandy soils. The rates of water released from the soil–SAP mixtures under heated conditions were mitigated with decreasing water content, which prolonged the time until desiccation of the mixtures. The water absorbency of the SAPs significantly decreased in salt solutions (KCl and CaCl2), but their absorbency mostly recovered following immersion in tap water. The soil–dry SAP mixtures retained a larger amount of water than the soil–gel SAP mixtures. Swollen SAPs predominantly retained water in the range of −0.98 to −3.92 kPa, suggesting that SAP induces a transition from gravitational water to readily plant-available water by swelling itself. SAPs barely increased the amount of plant-available water in a potential range of −3.92 to −98.1 kPa, but significantly increased the soil water at <−98.1 kPa. The soil water content increased with an increasing SAP application rate, whereas the proportion of plant-available water declined. Our findings indicated that the performance of SAPs depends on the pore space and a saline environment in the soil and that low SAP application rates are suitable for maximizing the water available to plants in sandy soils.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Water Retention Characteristics of Superabsorbent Polymers (SAPs) Used as Soil Amendments\",\"authors\":\"Masamichi Takahashi, I. Kosaka, S. Ohta\",\"doi\":\"10.3390/soilsystems7020058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superabsorbent polymers (SAPs) are used as a soil amendment for retaining water, but suitable methods for the application of SAPs have not yet been developed. Here, we characterized a variety of soil–SAP mixtures prepared using four different types of SAP in terms of their water absorption and release characteristics. The teabag method was applied to characterize the soil–SAP mixtures, except for measurements of the matric potential. The results showed that the variations in water absorbency among the four SAPs in isolation became insignificant when they were mixed with sandy soils. The rates of water released from the soil–SAP mixtures under heated conditions were mitigated with decreasing water content, which prolonged the time until desiccation of the mixtures. The water absorbency of the SAPs significantly decreased in salt solutions (KCl and CaCl2), but their absorbency mostly recovered following immersion in tap water. The soil–dry SAP mixtures retained a larger amount of water than the soil–gel SAP mixtures. Swollen SAPs predominantly retained water in the range of −0.98 to −3.92 kPa, suggesting that SAP induces a transition from gravitational water to readily plant-available water by swelling itself. SAPs barely increased the amount of plant-available water in a potential range of −3.92 to −98.1 kPa, but significantly increased the soil water at <−98.1 kPa. The soil water content increased with an increasing SAP application rate, whereas the proportion of plant-available water declined. Our findings indicated that the performance of SAPs depends on the pore space and a saline environment in the soil and that low SAP application rates are suitable for maximizing the water available to plants in sandy soils.\",\"PeriodicalId\":21908,\"journal\":{\"name\":\"Soil Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/soilsystems7020058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems7020058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

高吸水性聚合物(SAP)被用作土壤改良剂来保持水分,但尚未开发出适用于SAP的方法。在这里,我们对使用四种不同类型的SAP制备的各种土壤-SAP混合物的吸水和释放特性进行了表征。除基质电位的测量外,采用茶包法对土壤-SAP混合物进行了表征。结果表明,当四种SAP与沙质土壤混合时,它们之间的吸水性差异变得不显著。在加热条件下,土壤-SAP混合物的水分释放速率随着含水量的降低而降低,这延长了混合物干燥的时间。SAP在盐溶液(KCl和CaCl2)中的吸水性显著降低,但在浸入自来水后,其吸水性大多恢复。土壤-干SAP混合物比土壤-凝胶SAP混合物保留了更多的水分。膨胀的SAP主要保留−0.98至−3.92 kPa范围内的水分,这表明SAP通过自身膨胀诱导从重力水向植物可用水的转变。SAP在−3.92至−98.1 kPa的潜在范围内几乎没有增加植物可用水量,但在<−98.1 kPa。土壤含水量随施用量的增加而增加,而植物有效水的比例下降。我们的研究结果表明,SAP的性能取决于土壤中的孔隙空间和含盐环境,低SAP施用率适合于最大限度地提高沙质土壤中植物的可用水量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water Retention Characteristics of Superabsorbent Polymers (SAPs) Used as Soil Amendments
Superabsorbent polymers (SAPs) are used as a soil amendment for retaining water, but suitable methods for the application of SAPs have not yet been developed. Here, we characterized a variety of soil–SAP mixtures prepared using four different types of SAP in terms of their water absorption and release characteristics. The teabag method was applied to characterize the soil–SAP mixtures, except for measurements of the matric potential. The results showed that the variations in water absorbency among the four SAPs in isolation became insignificant when they were mixed with sandy soils. The rates of water released from the soil–SAP mixtures under heated conditions were mitigated with decreasing water content, which prolonged the time until desiccation of the mixtures. The water absorbency of the SAPs significantly decreased in salt solutions (KCl and CaCl2), but their absorbency mostly recovered following immersion in tap water. The soil–dry SAP mixtures retained a larger amount of water than the soil–gel SAP mixtures. Swollen SAPs predominantly retained water in the range of −0.98 to −3.92 kPa, suggesting that SAP induces a transition from gravitational water to readily plant-available water by swelling itself. SAPs barely increased the amount of plant-available water in a potential range of −3.92 to −98.1 kPa, but significantly increased the soil water at <−98.1 kPa. The soil water content increased with an increasing SAP application rate, whereas the proportion of plant-available water declined. Our findings indicated that the performance of SAPs depends on the pore space and a saline environment in the soil and that low SAP application rates are suitable for maximizing the water available to plants in sandy soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Systems
Soil Systems Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
5.30
自引率
5.70%
发文量
80
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信