关于0的个数方差和Berry的一个猜想

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-01-25 DOI:10.1112/mtk.12184
Meghann Moriah Lugar, Micah B. Milinovich, Emily Quesada-Herrera
{"title":"关于0的个数方差和Berry的一个猜想","authors":"Meghann Moriah Lugar,&nbsp;Micah B. Milinovich,&nbsp;Emily Quesada-Herrera","doi":"10.1112/mtk.12184","DOIUrl":null,"url":null,"abstract":"<p>Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non-zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non-universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000).</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"69 2","pages":"303-348"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12184","citationCount":"1","resultStr":"{\"title\":\"On the number variance of zeta zeros and a conjecture of Berry\",\"authors\":\"Meghann Moriah Lugar,&nbsp;Micah B. Milinovich,&nbsp;Emily Quesada-Herrera\",\"doi\":\"10.1112/mtk.12184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non-zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non-universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000).</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"69 2\",\"pages\":\"303-348\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12184\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12184\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12184","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

假设黎曼假设,我们证明了黎曼ζ函数对数的实部和虚部在短区间内的方差估计。我们给出了这些结果的三种不同公式。假设Chan关于零之间的间隙接近固定非零值的频率的猜想,我们证明了Berry(1988)关于非泛域中zeta零的数量方差的猜想。在这个范围内,高斯酉系综统计不描述零的分布。我们还计算了临界线上黎曼ζ函数模对数的二阶矩中的低阶项。假设Montgomery的对偶相关猜想,这就建立了Keating和Snaith(2000)猜想的一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number variance of zeta zeros and a conjecture of Berry

Assuming the Riemann hypothesis, we prove estimates for the variance of the real and imaginary part of the logarithm of the Riemann zeta function in short intervals. We give three different formulations of these results. Assuming a conjecture of Chan for how often gaps between zeros can be close to a fixed non-zero value, we prove a conjecture of Berry (1988) for the number variance of zeta zeros in the non-universal regime. In this range, Gaussian unitary ensemble statistics do not describe the distribution of the zeros. We also calculate lower order terms in the second moment of the logarithm of the modulus of the Riemann zeta function on the critical line. Assuming Montgomery's pair correlation conjecture, this establishes a special case of a conjecture of Keating and Snaith (2000).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信