非正则问题最优性的充要条件

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
V. Vivanco-Orellana, R. Osuna-Gómez, M. Rojas-Medar
{"title":"非正则问题最优性的充要条件","authors":"V. Vivanco-Orellana, R. Osuna-Gómez, M. Rojas-Medar","doi":"10.1080/01630563.2023.2235614","DOIUrl":null,"url":null,"abstract":"Abstract We derive new necessary and sufficient optimality conditions for optimization problems with multi-equality and inequality constraints through the Dubovitskii-Milyutin formalism, characterizing the feasible and tangent directions cones in a neighborhood of a non-regular point. We also establish conditions of 2-regularity under which necessary optimality conditions are non-degenerate. These conditions apply when the phenomenon of non-regularity (or abnormality) take place. In addition examples that illustrate our results are presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Necessary and Sufficient Optimality Conditions for Non-regular Problems\",\"authors\":\"V. Vivanco-Orellana, R. Osuna-Gómez, M. Rojas-Medar\",\"doi\":\"10.1080/01630563.2023.2235614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We derive new necessary and sufficient optimality conditions for optimization problems with multi-equality and inequality constraints through the Dubovitskii-Milyutin formalism, characterizing the feasible and tangent directions cones in a neighborhood of a non-regular point. We also establish conditions of 2-regularity under which necessary optimality conditions are non-degenerate. These conditions apply when the phenomenon of non-regularity (or abnormality) take place. In addition examples that illustrate our results are presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2235614\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2235614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们通过Dubovitskii-Milyutin形式推导了具有多重等式和不等式约束的优化问题的新的充要最优性条件,刻画了非正则点邻域中的可行方向锥和切线方向锥。我们还建立了2-正则性的条件,在该条件下,必要的最优性条件是非退化的。当发生不规则(或异常)现象时,这些条件适用。此外,还举例说明了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary and Sufficient Optimality Conditions for Non-regular Problems
Abstract We derive new necessary and sufficient optimality conditions for optimization problems with multi-equality and inequality constraints through the Dubovitskii-Milyutin formalism, characterizing the feasible and tangent directions cones in a neighborhood of a non-regular point. We also establish conditions of 2-regularity under which necessary optimality conditions are non-degenerate. These conditions apply when the phenomenon of non-regularity (or abnormality) take place. In addition examples that illustrate our results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信