基于混合分类分布的多智能体强化学习参数化值函数

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jian Zhao;Mingyu Yang;Youpeng Zhao;Xunhan Hu;Wengang Zhou;Houqiang Li
{"title":"基于混合分类分布的多智能体强化学习参数化值函数","authors":"Jian Zhao;Mingyu Yang;Youpeng Zhao;Xunhan Hu;Wengang Zhou;Houqiang Li","doi":"10.1109/TG.2023.3310150","DOIUrl":null,"url":null,"abstract":"In cooperative multi-agent tasks, a team of agents jointly interact with an environment by taking actions, receiving a team reward, and observing the next state. During the interactions, the uncertainty of environment and reward will inevitably induce stochasticity in the long-term returns, and the randomness can be exacerbated with the increasing number of agents. However, such randomness is ignored by most of the existing value-based multi-agent reinforcement learning (MARL) methods, which only model the expectation of \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n-value for both the individual agents and the team. Compared to using the expectations of the long-term returns, it is preferable to directly model the stochasticity by estimating the returns through distributions. With this motivation, this article proposes a novel value-based MARL framework from a distributional perspective, i.e., parameterizing value function via \n<underline>M</u>\nixture of \n<underline>C</u>\nategorical distributions for MARL (MCMARL). Specifically, we model both the individual and global \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n-values with categorical distribution. To integrate categorical distributions, we define five basic operations on the distribution, which allow the generalization of expected value function factorization methods (e.g., value decomposition networks (VDN) and QMIX) to their MCMARL variants. We further prove that our MCMARL framework satisfies the \n<italic>Distributional-Individual-Global-Max</i>\n principle with respect to the expectation of distribution, which guarantees the consistency between joint and individual greedy action selections in the global and individual \n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\n-values. Empirically, we evaluate MCMARL on both the stochastic matrix game and the challenging set of \n<italic>StarCraft II</i>\n micromanagement tasks, showing the efficacy of our framework.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"16 3","pages":"556-565"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MCMARL: Parameterizing Value Function via Mixture of Categorical Distributions for Multi-Agent Reinforcement Learning\",\"authors\":\"Jian Zhao;Mingyu Yang;Youpeng Zhao;Xunhan Hu;Wengang Zhou;Houqiang Li\",\"doi\":\"10.1109/TG.2023.3310150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In cooperative multi-agent tasks, a team of agents jointly interact with an environment by taking actions, receiving a team reward, and observing the next state. During the interactions, the uncertainty of environment and reward will inevitably induce stochasticity in the long-term returns, and the randomness can be exacerbated with the increasing number of agents. However, such randomness is ignored by most of the existing value-based multi-agent reinforcement learning (MARL) methods, which only model the expectation of \\n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\\n-value for both the individual agents and the team. Compared to using the expectations of the long-term returns, it is preferable to directly model the stochasticity by estimating the returns through distributions. With this motivation, this article proposes a novel value-based MARL framework from a distributional perspective, i.e., parameterizing value function via \\n<underline>M</u>\\nixture of \\n<underline>C</u>\\nategorical distributions for MARL (MCMARL). Specifically, we model both the individual and global \\n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\\n-values with categorical distribution. To integrate categorical distributions, we define five basic operations on the distribution, which allow the generalization of expected value function factorization methods (e.g., value decomposition networks (VDN) and QMIX) to their MCMARL variants. We further prove that our MCMARL framework satisfies the \\n<italic>Distributional-Individual-Global-Max</i>\\n principle with respect to the expectation of distribution, which guarantees the consistency between joint and individual greedy action selections in the global and individual \\n<inline-formula><tex-math>$Q$</tex-math></inline-formula>\\n-values. Empirically, we evaluate MCMARL on both the stochastic matrix game and the challenging set of \\n<italic>StarCraft II</i>\\n micromanagement tasks, showing the efficacy of our framework.\",\"PeriodicalId\":55977,\"journal\":{\"name\":\"IEEE Transactions on Games\",\"volume\":\"16 3\",\"pages\":\"556-565\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Games\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10234567/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10234567/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在协作式多智能体任务中,一组智能体通过采取行动、获得团队奖励和观察下一个状态来共同与环境进行交互。在相互作用过程中,环境和报酬的不确定性不可避免地会导致长期收益的随机性,并且随着agent数量的增加,随机性会加剧。然而,大多数现有的基于值的多智能体强化学习(MARL)方法都忽略了这种随机性,这些方法只对个体智能体和团队的q值期望进行建模。与使用长期收益预期相比,通过分布来估计收益,直接对随机性进行建模更为可取。基于这一动机,本研究从分布的角度提出了一种新的基于价值的MARL框架,\emph{即}通过\underline{混合}\underline{分类}分布对MARL的价值函数进行参数化。具体来说,我们对个体q值和全局q值进行了分类分布建模。为了整合分类分布,我们定义了分布上的五种基本操作,这些操作允许将期望值函数分解方法(\emph{例如}VDN和QMIX)推广到它们的MCMARL变体。进一步证明了MCMARL框架在分布期望方面满足\emph{Distributional-Individual-Global-Max (DIGM)原则,保证了全局}q值和个体q值上联合和个体贪心行为选择的一致性。根据经验,我们在随机矩阵游戏和一组具有挑战性的《星际争霸2》微管理任务中评估了MCMARL,显示了我们的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MCMARL: Parameterizing Value Function via Mixture of Categorical Distributions for Multi-Agent Reinforcement Learning
In cooperative multi-agent tasks, a team of agents jointly interact with an environment by taking actions, receiving a team reward, and observing the next state. During the interactions, the uncertainty of environment and reward will inevitably induce stochasticity in the long-term returns, and the randomness can be exacerbated with the increasing number of agents. However, such randomness is ignored by most of the existing value-based multi-agent reinforcement learning (MARL) methods, which only model the expectation of $Q$ -value for both the individual agents and the team. Compared to using the expectations of the long-term returns, it is preferable to directly model the stochasticity by estimating the returns through distributions. With this motivation, this article proposes a novel value-based MARL framework from a distributional perspective, i.e., parameterizing value function via M ixture of C ategorical distributions for MARL (MCMARL). Specifically, we model both the individual and global $Q$ -values with categorical distribution. To integrate categorical distributions, we define five basic operations on the distribution, which allow the generalization of expected value function factorization methods (e.g., value decomposition networks (VDN) and QMIX) to their MCMARL variants. We further prove that our MCMARL framework satisfies the Distributional-Individual-Global-Max principle with respect to the expectation of distribution, which guarantees the consistency between joint and individual greedy action selections in the global and individual $Q$ -values. Empirically, we evaluate MCMARL on both the stochastic matrix game and the challenging set of StarCraft II micromanagement tasks, showing the efficacy of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信