咪唑酸沸石骨架膜:新的合成方法及工业应用进展。

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED
Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis
{"title":"咪唑酸沸石骨架膜:新的合成方法及工业应用进展。","authors":"Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis","doi":"10.1146/annurev-chembioeng-092320-120148","DOIUrl":null,"url":null,"abstract":"In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use.\",\"authors\":\"Dennis T. Lee, Peter Corkery, Sunghwan Park, Hae‐Kwon Jeong, M. Tsapatsis\",\"doi\":\"10.1146/annurev-chembioeng-092320-120148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-092320-120148\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092320-120148","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 8

摘要

在过去的十年里,沸石咪唑酸酯骨架(ZIFs)因其作为选择性分离膜的潜力而被广泛研究。在这篇综述中,我们强调了ZIF的独特结构特性,使其能够实现某些重要的分离,如丙烯与丙烷的分离,并总结了ZIF薄膜在多孔基底上沉积及其合成后处理改性的技术现状。我们还回顾了已报道的具有代表性的膜合成方法的膜性能,并试图根据可扩展性的潜力对合成方法进行排名。为了比较膜性能对膜合成方法和操作条件的依赖性,我们绘制了所选ZIF-8膜用于丙烯/丙烷分离的通量和分离因子。最后,考虑到在工业相关条件下进一步提高可扩展性、成本效益和稳定性能的重要性,我们提供了未来的方向。《化学与生物分子工程年刊》第13卷预计最终在线出版日期为2022年10月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use.
In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability. To compare the dependence of membrane performance on membrane synthesis methods and operating conditions, we map out fluxes and separation factors of selected ZIF-8 membranes for propylene/propane separation. Finally, we provide future directions considering the importance of further improvements in scalability, cost effectiveness, and stable performance under industrially relevant conditions. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信