盲源分离在线性执行器电气和机械故障健康监测中的应用

Q3 Engineering
R. Michaud, Romain Breuneval, E. Boutleux, J. Huillery, G. Clerc, B. Mansouri
{"title":"盲源分离在线性执行器电气和机械故障健康监测中的应用","authors":"R. Michaud, Romain Breuneval, E. Boutleux, J. Huillery, G. Clerc, B. Mansouri","doi":"10.3934/electreng.2019.4.328","DOIUrl":null,"url":null,"abstract":"This paper proposes an automated fault isolation and diagnostic chain for the health monitoring of a linear actuator composed of a roller screw driven by a permanent magnet synchronous motor. Four health conditions are considered and diagnosed: the healthy condition, a short circuit in the stator windings, a mechanical backlash in the roller screw, and the combination of both faults. In order to separate the fault signatures, empirical mode decomposition is applied to the motor current, followed by independent component analysis, automatic isolation of the fault signatures, and a classification step for the diagnosis. The novelty proposed consists of an automatic processing of the independent components to isolate the effects of the short-circuit from the effects of the backlash. This isolation step, in contrast to earlier works, requires no human intervention to select signals of interest, making it suitable to real-time onboard diagnostics. Furthermore, results show that independent component analysis occupies an important role in the diagnosis: its omission leads to a reduction in the diagnostic performance of the classifier as well as a reduction in measures of class separability.","PeriodicalId":36329,"journal":{"name":"AIMS Electronics and Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of blind source separation to the health monitoring of electrical and mechanical faults in a linear actuator\",\"authors\":\"R. Michaud, Romain Breuneval, E. Boutleux, J. Huillery, G. Clerc, B. Mansouri\",\"doi\":\"10.3934/electreng.2019.4.328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automated fault isolation and diagnostic chain for the health monitoring of a linear actuator composed of a roller screw driven by a permanent magnet synchronous motor. Four health conditions are considered and diagnosed: the healthy condition, a short circuit in the stator windings, a mechanical backlash in the roller screw, and the combination of both faults. In order to separate the fault signatures, empirical mode decomposition is applied to the motor current, followed by independent component analysis, automatic isolation of the fault signatures, and a classification step for the diagnosis. The novelty proposed consists of an automatic processing of the independent components to isolate the effects of the short-circuit from the effects of the backlash. This isolation step, in contrast to earlier works, requires no human intervention to select signals of interest, making it suitable to real-time onboard diagnostics. Furthermore, results show that independent component analysis occupies an important role in the diagnosis: its omission leads to a reduction in the diagnostic performance of the classifier as well as a reduction in measures of class separability.\",\"PeriodicalId\":36329,\"journal\":{\"name\":\"AIMS Electronics and Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Electronics and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/electreng.2019.4.328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/electreng.2019.4.328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于线性致动器健康监测的自动故障隔离和诊断链,该线性致动器由永磁同步电机驱动的滚柱螺杆组成。考虑并诊断了四种健康状况:健康状况、定子绕组短路、滚柱螺杆机械间隙以及两种故障的组合。为了分离故障特征,将经验模式分解应用于电机电流,然后进行独立分量分析,自动隔离故障特征,并进行诊断的分类步骤。所提出的新颖性包括独立部件的自动处理,以将短路的影响与齿隙的影响隔离开来。与早期的工作相比,这种隔离步骤不需要人工干预来选择感兴趣的信号,因此适用于实时车载诊断。此外,结果表明,独立分量分析在诊断中发挥着重要作用:它的遗漏导致分类器的诊断性能降低,以及类可分性度量的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of blind source separation to the health monitoring of electrical and mechanical faults in a linear actuator
This paper proposes an automated fault isolation and diagnostic chain for the health monitoring of a linear actuator composed of a roller screw driven by a permanent magnet synchronous motor. Four health conditions are considered and diagnosed: the healthy condition, a short circuit in the stator windings, a mechanical backlash in the roller screw, and the combination of both faults. In order to separate the fault signatures, empirical mode decomposition is applied to the motor current, followed by independent component analysis, automatic isolation of the fault signatures, and a classification step for the diagnosis. The novelty proposed consists of an automatic processing of the independent components to isolate the effects of the short-circuit from the effects of the backlash. This isolation step, in contrast to earlier works, requires no human intervention to select signals of interest, making it suitable to real-time onboard diagnostics. Furthermore, results show that independent component analysis occupies an important role in the diagnosis: its omission leads to a reduction in the diagnostic performance of the classifier as well as a reduction in measures of class separability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Electronics and Electrical Engineering
AIMS Electronics and Electrical Engineering Engineering-Control and Systems Engineering
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信