{"title":"使用用于蚀刻掩模形成的优化喷墨打印方法在53µm厚的结晶硅衬底上制造叉指背接触硅异质结太阳能电池","authors":"H. Takagishi, H. Noge, Kimihiko Saito, M. Kondo","doi":"10.7567/JJAP.56.040308","DOIUrl":null,"url":null,"abstract":"Inkjet-printing-based fabrication process of the interdigitated back-contact silicon heterojunction solar cells has the potential to reduce the manufacturing costs because of its low machine and material costs and its applicability to thinner fragile silicon substrates than 100 µm. In this study, ink and printing parameters were investigated to obtain the desirable fine patterns and the resultant accuracy of the linewidths was less than ±0.05 mm on a flat surface. The completed cells using inkjet-printing showed almost the same performance of that fabricated by photolithography. In addition, flexible and free-standing cell on a 53-µm-thick Si substrate has been successfully fabricated.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.7567/JJAP.56.040308","citationCount":"10","resultStr":"{\"title\":\"Fabrication of interdigitated back-contact silicon heterojunction solar cells on a 53-µm-thick crystalline silicon substrate by using the optimized inkjet printing method for etching mask formation\",\"authors\":\"H. Takagishi, H. Noge, Kimihiko Saito, M. Kondo\",\"doi\":\"10.7567/JJAP.56.040308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inkjet-printing-based fabrication process of the interdigitated back-contact silicon heterojunction solar cells has the potential to reduce the manufacturing costs because of its low machine and material costs and its applicability to thinner fragile silicon substrates than 100 µm. In this study, ink and printing parameters were investigated to obtain the desirable fine patterns and the resultant accuracy of the linewidths was less than ±0.05 mm on a flat surface. The completed cells using inkjet-printing showed almost the same performance of that fabricated by photolithography. In addition, flexible and free-standing cell on a 53-µm-thick Si substrate has been successfully fabricated.\",\"PeriodicalId\":14741,\"journal\":{\"name\":\"Japanese Journal of Applied Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2017-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.7567/JJAP.56.040308\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7567/JJAP.56.040308\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7567/JJAP.56.040308","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Fabrication of interdigitated back-contact silicon heterojunction solar cells on a 53-µm-thick crystalline silicon substrate by using the optimized inkjet printing method for etching mask formation
Inkjet-printing-based fabrication process of the interdigitated back-contact silicon heterojunction solar cells has the potential to reduce the manufacturing costs because of its low machine and material costs and its applicability to thinner fragile silicon substrates than 100 µm. In this study, ink and printing parameters were investigated to obtain the desirable fine patterns and the resultant accuracy of the linewidths was less than ±0.05 mm on a flat surface. The completed cells using inkjet-printing showed almost the same performance of that fabricated by photolithography. In addition, flexible and free-standing cell on a 53-µm-thick Si substrate has been successfully fabricated.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS