基于人工智能的降雨水位预报技术分析

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Chorong Kim, Chung-Soo Kim
{"title":"基于人工智能的降雨水位预报技术分析","authors":"Chorong Kim,&nbsp;Chung-Soo Kim","doi":"10.1016/j.tcrr.2021.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Water level forecasting according to rainfall is important for water resource management and disaster prevention. Existing hydrological analysis is accompanied by difficulties in water level forecasting analysis such as topographic data and model parameter optimization of the area. Recently, with the improvement of AI (Artificial Intelligence) technology, a research using AI technology in the water resource field is being conducted.</p><p>In this research, water level forecasting was performed using an AI-based technique that can capture the relationship between data. As the watershed for the study, the Seolmacheon catchment which has the rich historical hydrological data, was selected. SVM (Support Vector Machine) and a gradient boosting technique were used for AI machine learning. For AI deep learning, water level forecasting was performed using a Long Short-Term Memory (LSTM) network among Recurrent Neural Networks (RNNs) used for time series analysis.</p><p>The correlation coefficient and NSE (Nash-Sutcliffe Efficiency), which are mainly used forhydrological analysis, were used as performance indicators. As a result of the analysis, all three techniques performed excellently in water level forecasting. Among them, the LSTM network showed higher performance as the correction period using historical data increased.</p><p>When there is a concern about an emergency disaster such as torrential rainfall in Korea, water level forecasting requires quick judgment. It is thought that the above requirements will be satisfied when an AI-based technique that can forecast water level using historical hydrology data is applied.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"10 4","pages":"Pages 223-228"},"PeriodicalIF":2.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603221000461/pdfft?md5=0d0081342740112a8759bcca377f54fc&pid=1-s2.0-S2225603221000461-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Analysis of AI-based techniques for forecasting water level according to rainfall\",\"authors\":\"Chorong Kim,&nbsp;Chung-Soo Kim\",\"doi\":\"10.1016/j.tcrr.2021.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water level forecasting according to rainfall is important for water resource management and disaster prevention. Existing hydrological analysis is accompanied by difficulties in water level forecasting analysis such as topographic data and model parameter optimization of the area. Recently, with the improvement of AI (Artificial Intelligence) technology, a research using AI technology in the water resource field is being conducted.</p><p>In this research, water level forecasting was performed using an AI-based technique that can capture the relationship between data. As the watershed for the study, the Seolmacheon catchment which has the rich historical hydrological data, was selected. SVM (Support Vector Machine) and a gradient boosting technique were used for AI machine learning. For AI deep learning, water level forecasting was performed using a Long Short-Term Memory (LSTM) network among Recurrent Neural Networks (RNNs) used for time series analysis.</p><p>The correlation coefficient and NSE (Nash-Sutcliffe Efficiency), which are mainly used forhydrological analysis, were used as performance indicators. As a result of the analysis, all three techniques performed excellently in water level forecasting. Among them, the LSTM network showed higher performance as the correction period using historical data increased.</p><p>When there is a concern about an emergency disaster such as torrential rainfall in Korea, water level forecasting requires quick judgment. It is thought that the above requirements will be satisfied when an AI-based technique that can forecast water level using historical hydrology data is applied.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"10 4\",\"pages\":\"Pages 223-228\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2225603221000461/pdfft?md5=0d0081342740112a8759bcca377f54fc&pid=1-s2.0-S2225603221000461-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603221000461\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603221000461","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

根据降雨进行水位预报对水资源管理和防灾具有重要意义。现有的水文分析存在着区域地形数据、模型参数优化等水位预测分析的困难。最近,随着AI(人工智能)技术的进步,将AI技术应用于水资源领域的研究正在进行。在这项研究中,水位预测使用了一种基于人工智能的技术,可以捕捉数据之间的关系。作为研究的分水岭,选择了历史水文资料丰富的雪马川流域。支持向量机(SVM)和梯度增强技术用于人工智能机器学习。对于人工智能深度学习,水位预测使用用于时间序列分析的递归神经网络(rnn)中的长短期记忆(LSTM)网络进行。以主要用于水文分析的相关系数(correlation coefficient)和NSE (Nash-Sutcliffe Efficiency)作为绩效指标。分析结果表明,三种技术在水位预报中均表现优异。其中,LSTM网络的性能随着历史数据校正周期的增加而提高。在韩国发生暴雨等紧急灾害时,水位预报需要快速判断。应用基于人工智能的历史水文资料水位预测技术,可以满足上述要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of AI-based techniques for forecasting water level according to rainfall

Water level forecasting according to rainfall is important for water resource management and disaster prevention. Existing hydrological analysis is accompanied by difficulties in water level forecasting analysis such as topographic data and model parameter optimization of the area. Recently, with the improvement of AI (Artificial Intelligence) technology, a research using AI technology in the water resource field is being conducted.

In this research, water level forecasting was performed using an AI-based technique that can capture the relationship between data. As the watershed for the study, the Seolmacheon catchment which has the rich historical hydrological data, was selected. SVM (Support Vector Machine) and a gradient boosting technique were used for AI machine learning. For AI deep learning, water level forecasting was performed using a Long Short-Term Memory (LSTM) network among Recurrent Neural Networks (RNNs) used for time series analysis.

The correlation coefficient and NSE (Nash-Sutcliffe Efficiency), which are mainly used forhydrological analysis, were used as performance indicators. As a result of the analysis, all three techniques performed excellently in water level forecasting. Among them, the LSTM network showed higher performance as the correction period using historical data increased.

When there is a concern about an emergency disaster such as torrential rainfall in Korea, water level forecasting requires quick judgment. It is thought that the above requirements will be satisfied when an AI-based technique that can forecast water level using historical hydrology data is applied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信