{"title":"由几乎收敛的二元展开序列定义的集合的Hausdorff维数","authors":"Q. Song","doi":"10.1017/S0017089523000046","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences. More precisely, the Hausdorff dimension of the following set \n\\begin{align*} \\bigg\\{x\\in[0,1)\\;:\\;\\frac{1}{n}\\sum_{k=a}^{a+n-1}x_{k}\\longrightarrow\\alpha\\textrm{ uniformly in }a\\in\\mathbb{N}\\textrm{ as }n\\rightarrow\\infty\\bigg\\} \\end{align*}\n is determined for any \n$ \\alpha\\in[0,1] $\n . This completes a question considered by Usachev [Glasg. Math. J. 64 (2022), 691–697] where only the dimension for rational \n$ \\alpha $\n is given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff dimension of sets defined by almost convergent binary expansion sequences\",\"authors\":\"Q. Song\",\"doi\":\"10.1017/S0017089523000046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences. More precisely, the Hausdorff dimension of the following set \\n\\\\begin{align*} \\\\bigg\\\\{x\\\\in[0,1)\\\\;:\\\\;\\\\frac{1}{n}\\\\sum_{k=a}^{a+n-1}x_{k}\\\\longrightarrow\\\\alpha\\\\textrm{ uniformly in }a\\\\in\\\\mathbb{N}\\\\textrm{ as }n\\\\rightarrow\\\\infty\\\\bigg\\\\} \\\\end{align*}\\n is determined for any \\n$ \\\\alpha\\\\in[0,1] $\\n . This completes a question considered by Usachev [Glasg. Math. J. 64 (2022), 691–697] where only the dimension for rational \\n$ \\\\alpha $\\n is given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089523000046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hausdorff dimension of sets defined by almost convergent binary expansion sequences
Abstract In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences. More precisely, the Hausdorff dimension of the following set
\begin{align*} \bigg\{x\in[0,1)\;:\;\frac{1}{n}\sum_{k=a}^{a+n-1}x_{k}\longrightarrow\alpha\textrm{ uniformly in }a\in\mathbb{N}\textrm{ as }n\rightarrow\infty\bigg\} \end{align*}
is determined for any
$ \alpha\in[0,1] $
. This completes a question considered by Usachev [Glasg. Math. J. 64 (2022), 691–697] where only the dimension for rational
$ \alpha $
is given.