{"title":"具有直流电机和时变观测器的弹性振动单元的振动场控制","authors":"O. Tomchina","doi":"10.35470/2226-4116-2021-10-4-277-286","DOIUrl":null,"url":null,"abstract":"In the paper the problem of feedback control of vibrational fields in a vibration unit is analyzed taking into account the influence of the elasticity of cardan shafts, the drive dynamics, saturation for control torques. In addition, the synthesized rotor synchronization control algorithm uses the estimates of a non-stationary observer, which makes it possible to implement it practically on a two-rotor vibration unit SV-2. The performance of the closed loop mechatronic systems is examined by simulation for the model of the two-rotor vibration unit SV-2.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of vibrational field in an elastic vibration unit with DC motors and time-varying observer\",\"authors\":\"O. Tomchina\",\"doi\":\"10.35470/2226-4116-2021-10-4-277-286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper the problem of feedback control of vibrational fields in a vibration unit is analyzed taking into account the influence of the elasticity of cardan shafts, the drive dynamics, saturation for control torques. In addition, the synthesized rotor synchronization control algorithm uses the estimates of a non-stationary observer, which makes it possible to implement it practically on a two-rotor vibration unit SV-2. The performance of the closed loop mechatronic systems is examined by simulation for the model of the two-rotor vibration unit SV-2.\",\"PeriodicalId\":37674,\"journal\":{\"name\":\"Cybernetics and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35470/2226-4116-2021-10-4-277-286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2021-10-4-277-286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Control of vibrational field in an elastic vibration unit with DC motors and time-varying observer
In the paper the problem of feedback control of vibrational fields in a vibration unit is analyzed taking into account the influence of the elasticity of cardan shafts, the drive dynamics, saturation for control torques. In addition, the synthesized rotor synchronization control algorithm uses the estimates of a non-stationary observer, which makes it possible to implement it practically on a two-rotor vibration unit SV-2. The performance of the closed loop mechatronic systems is examined by simulation for the model of the two-rotor vibration unit SV-2.
期刊介绍:
The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.