基于联盟大小的合作博弈的新值

IF 0.5 4区 经济学 Q4 ECONOMICS
Surajit Borkotokey, Dhrubajit Choudhury, Rajnish Kumar, Sudipta Sarangi
{"title":"基于联盟大小的合作博弈的新值","authors":"Surajit Borkotokey,&nbsp;Dhrubajit Choudhury,&nbsp;Rajnish Kumar,&nbsp;Sudipta Sarangi","doi":"10.1111/ijet.12381","DOIUrl":null,"url":null,"abstract":"<p>We propose and characterize a new value for TU cooperative games based on egalitarian distribution of worths in smaller coalitions and players' marginal productivity in larger coalitions. This value belongs to the class of Procedural values due to Malawski. Our value is identical with the Shapley value on one extreme and the Equal Division rule on the other extreme. We show that our value is identical with the solidarity value due to Bèal et al. of the dual game. However, by duality, our characterization intuitively improves over the axiomatization of this solidarity value. We also provide a mechanism that implements our value in sub-game perfect Nash equilibrium. Finally, a generalized version of this value is proposed followed by its characterizations.</p>","PeriodicalId":44551,"journal":{"name":"International Journal of Economic Theory","volume":"19 4","pages":"830-854"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new value for cooperative games based on coalition size\",\"authors\":\"Surajit Borkotokey,&nbsp;Dhrubajit Choudhury,&nbsp;Rajnish Kumar,&nbsp;Sudipta Sarangi\",\"doi\":\"10.1111/ijet.12381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose and characterize a new value for TU cooperative games based on egalitarian distribution of worths in smaller coalitions and players' marginal productivity in larger coalitions. This value belongs to the class of Procedural values due to Malawski. Our value is identical with the Shapley value on one extreme and the Equal Division rule on the other extreme. We show that our value is identical with the solidarity value due to Bèal et al. of the dual game. However, by duality, our characterization intuitively improves over the axiomatization of this solidarity value. We also provide a mechanism that implements our value in sub-game perfect Nash equilibrium. Finally, a generalized version of this value is proposed followed by its characterizations.</p>\",\"PeriodicalId\":44551,\"journal\":{\"name\":\"International Journal of Economic Theory\",\"volume\":\"19 4\",\"pages\":\"830-854\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Economic Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijet.12381\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Economic Theory","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijet.12381","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

基于较小联盟中价值的平均分配和较大联盟中参与者的边际生产率,我们提出并描述了TU合作博弈的新值。由于Malawski,该值属于过程值类。我们的值在一个极端上与Shapley值相同,在另一个极端上与等分规则相同。我们证明了我们的价值与二元博弈的b等人的团结价值是相同的。然而,通过对偶性,我们的特征直观地改善了这种团结价值的公理化。我们还提供了一种在子博弈完美纳什均衡中实现我们的价值的机制。最后,提出了该值的广义版本,并对其进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new value for cooperative games based on coalition size

We propose and characterize a new value for TU cooperative games based on egalitarian distribution of worths in smaller coalitions and players' marginal productivity in larger coalitions. This value belongs to the class of Procedural values due to Malawski. Our value is identical with the Shapley value on one extreme and the Equal Division rule on the other extreme. We show that our value is identical with the solidarity value due to Bèal et al. of the dual game. However, by duality, our characterization intuitively improves over the axiomatization of this solidarity value. We also provide a mechanism that implements our value in sub-game perfect Nash equilibrium. Finally, a generalized version of this value is proposed followed by its characterizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信