Fe掺杂在多孔Bi5O7I微孔中诱导的电荷局域化增强CO2光还原为CO

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yang Wang , Chaogang Ban , Jiazhi Meng , Jiangping Ma , Hanjun Zou , Yajie Feng , Junjie Ding , Youyu Duan , Liyong Gan , Xiaoyuan Zhou
{"title":"Fe掺杂在多孔Bi5O7I微孔中诱导的电荷局域化增强CO2光还原为CO","authors":"Yang Wang ,&nbsp;Chaogang Ban ,&nbsp;Jiazhi Meng ,&nbsp;Jiangping Ma ,&nbsp;Hanjun Zou ,&nbsp;Yajie Feng ,&nbsp;Junjie Ding ,&nbsp;Youyu Duan ,&nbsp;Liyong Gan ,&nbsp;Xiaoyuan Zhou","doi":"10.1016/j.seppur.2023.123379","DOIUrl":null,"url":null,"abstract":"<div><p>The bismuth-rich bismuth oxyhalide materials exhibit prominent photocatalytic CO<sub>2</sub> reduction (PCR) performance owing to the considerable negative conduction band potential and unique intrinsic internal electric field. However, it possesses poor capture ability of CO<sub>2</sub> molecule due to the intrinsically weak adsorption, greatly limiting its further PCR improvement. Herein, we modulate the spatial charge redistribution over hierarchically Bi<sub>5</sub>O<sub>7</sub>I micro-flower through a facile and cost-efficient iron doping strategy, achieving significantly enhanced CO<sub>2</sub> capture capacity. Mechanistic studies indicate that the promoted adsorption ability originates from the localized electrons around the doped Fe sites. Benefiting from the resultant unique electronic structures, the Fe doped Bi<sub>5</sub>O<sub>7</sub>I micro-flowers also exhibit remarkably improved harvest of visible light and promoted charge separation and transfer capability, thus finally achieving a notably boosted photocatalytic CO evolution rate of 12.02 μmol·g<sup>−1</sup>·h<sup>−1</sup> without any sacrifice agents.</p></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"312 ","pages":"Article 123379"},"PeriodicalIF":9.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Charge localization induced by Fe doping in porous Bi5O7I Micro-flower for enhanced photoreduction of CO2 to CO\",\"authors\":\"Yang Wang ,&nbsp;Chaogang Ban ,&nbsp;Jiazhi Meng ,&nbsp;Jiangping Ma ,&nbsp;Hanjun Zou ,&nbsp;Yajie Feng ,&nbsp;Junjie Ding ,&nbsp;Youyu Duan ,&nbsp;Liyong Gan ,&nbsp;Xiaoyuan Zhou\",\"doi\":\"10.1016/j.seppur.2023.123379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The bismuth-rich bismuth oxyhalide materials exhibit prominent photocatalytic CO<sub>2</sub> reduction (PCR) performance owing to the considerable negative conduction band potential and unique intrinsic internal electric field. However, it possesses poor capture ability of CO<sub>2</sub> molecule due to the intrinsically weak adsorption, greatly limiting its further PCR improvement. Herein, we modulate the spatial charge redistribution over hierarchically Bi<sub>5</sub>O<sub>7</sub>I micro-flower through a facile and cost-efficient iron doping strategy, achieving significantly enhanced CO<sub>2</sub> capture capacity. Mechanistic studies indicate that the promoted adsorption ability originates from the localized electrons around the doped Fe sites. Benefiting from the resultant unique electronic structures, the Fe doped Bi<sub>5</sub>O<sub>7</sub>I micro-flowers also exhibit remarkably improved harvest of visible light and promoted charge separation and transfer capability, thus finally achieving a notably boosted photocatalytic CO evolution rate of 12.02 μmol·g<sup>−1</sup>·h<sup>−1</sup> without any sacrifice agents.</p></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":\"312 \",\"pages\":\"Article 123379\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586623002873\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586623002873","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 7

摘要

富铋氧化卤化铋材料由于具有可观的负导带电位和独特的内禀电场,表现出优异的光催化CO2还原(PCR)性能。但由于其本身吸附能力较弱,对CO2分子的捕获能力较差,极大地限制了其进一步的PCR改进。在此,我们通过一种简单且经济的铁掺杂策略来调节Bi5O7I微花的空间电荷再分配,从而显著增强了CO2捕获能力。机理研究表明,增强的吸附能力源于掺杂铁位点周围的局域电子。得益于独特的电子结构,Fe掺杂的Bi5O7I微花还表现出明显改善的可见光收获,促进了电荷分离和转移能力,最终在不牺牲任何剂的情况下实现了12.02 μmol·g−1·h−1的光催化CO析出速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charge localization induced by Fe doping in porous Bi5O7I Micro-flower for enhanced photoreduction of CO2 to CO

The bismuth-rich bismuth oxyhalide materials exhibit prominent photocatalytic CO2 reduction (PCR) performance owing to the considerable negative conduction band potential and unique intrinsic internal electric field. However, it possesses poor capture ability of CO2 molecule due to the intrinsically weak adsorption, greatly limiting its further PCR improvement. Herein, we modulate the spatial charge redistribution over hierarchically Bi5O7I micro-flower through a facile and cost-efficient iron doping strategy, achieving significantly enhanced CO2 capture capacity. Mechanistic studies indicate that the promoted adsorption ability originates from the localized electrons around the doped Fe sites. Benefiting from the resultant unique electronic structures, the Fe doped Bi5O7I micro-flowers also exhibit remarkably improved harvest of visible light and promoted charge separation and transfer capability, thus finally achieving a notably boosted photocatalytic CO evolution rate of 12.02 μmol·g−1·h−1 without any sacrifice agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信