Pintu Bhunia, M. Gürdal, K. Paul, A. Sen, R. Tapdigoglu
{"title":"关于重核Hilbert空间算子和Berezin-Radius不等式空间上的一个新范数","authors":"Pintu Bhunia, M. Gürdal, K. Paul, A. Sen, R. Tapdigoglu","doi":"10.1080/01630563.2023.2221857","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we provide a new norm(α-Berezin norm) on the space of all bounded linear operators defined on a reproducing kernel Hilbert space, which generalizes the Berezin radius and the Berezin norm. We study the basic properties of the α-Berezin norm and develop various inequalities involving the α-Berezin norm. By using the inequalities we obtain various bounds for the Berezin radius of bounded linear operators, which improve on the earlier bounds. Further, we obtain a Berezin radius inequality for the sum of the product of operators, from which we derive new Berezin radius bounds.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"970 - 986"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities\",\"authors\":\"Pintu Bhunia, M. Gürdal, K. Paul, A. Sen, R. Tapdigoglu\",\"doi\":\"10.1080/01630563.2023.2221857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we provide a new norm(α-Berezin norm) on the space of all bounded linear operators defined on a reproducing kernel Hilbert space, which generalizes the Berezin radius and the Berezin norm. We study the basic properties of the α-Berezin norm and develop various inequalities involving the α-Berezin norm. By using the inequalities we obtain various bounds for the Berezin radius of bounded linear operators, which improve on the earlier bounds. Further, we obtain a Berezin radius inequality for the sum of the product of operators, from which we derive new Berezin radius bounds.\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"44 1\",\"pages\":\"970 - 986\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2221857\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2221857","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities
Abstract In this paper, we provide a new norm(α-Berezin norm) on the space of all bounded linear operators defined on a reproducing kernel Hilbert space, which generalizes the Berezin radius and the Berezin norm. We study the basic properties of the α-Berezin norm and develop various inequalities involving the α-Berezin norm. By using the inequalities we obtain various bounds for the Berezin radius of bounded linear operators, which improve on the earlier bounds. Further, we obtain a Berezin radius inequality for the sum of the product of operators, from which we derive new Berezin radius bounds.
期刊介绍:
Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal.
Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.