{"title":"MOF–热能转换和储存中的氨工作对","authors":"Shao-Fei Wu, Bing-Zhi Yuan, Li-Wei Wang","doi":"10.1038/s41578-023-00593-7","DOIUrl":null,"url":null,"abstract":"Sorption working pairs, which can convert low-grade heat into cold energy or seasonally store thermal energy, are potential future carbon-neutral materials for thermal management. This Comment highlights the superiorities of metal–organic framework (MOF)–ammonia working pairs for adaptable thermal management under extreme climates and discusses strategies to design MOFs with high stability and ammonia sorption capacity.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"8 10","pages":"636-638"},"PeriodicalIF":79.8000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOF–ammonia working pairs in thermal energy conversion and storage\",\"authors\":\"Shao-Fei Wu, Bing-Zhi Yuan, Li-Wei Wang\",\"doi\":\"10.1038/s41578-023-00593-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sorption working pairs, which can convert low-grade heat into cold energy or seasonally store thermal energy, are potential future carbon-neutral materials for thermal management. This Comment highlights the superiorities of metal–organic framework (MOF)–ammonia working pairs for adaptable thermal management under extreme climates and discusses strategies to design MOFs with high stability and ammonia sorption capacity.\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"8 10\",\"pages\":\"636-638\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41578-023-00593-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41578-023-00593-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
MOF–ammonia working pairs in thermal energy conversion and storage
Sorption working pairs, which can convert low-grade heat into cold energy or seasonally store thermal energy, are potential future carbon-neutral materials for thermal management. This Comment highlights the superiorities of metal–organic framework (MOF)–ammonia working pairs for adaptable thermal management under extreme climates and discusses strategies to design MOFs with high stability and ammonia sorption capacity.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.