{"title":"增强现实技术治疗眶底骨折的初步经验-技术说明","authors":"Adeeb Zoabi , Daniel Oren , Shai Tejman-Yarden , Idan Redenski , Fares Kablan , Samer Srouji","doi":"10.1016/j.stlm.2022.100072","DOIUrl":null,"url":null,"abstract":"<div><p>The marked developments in the fields of 3D planning and printing in the last few decades, have enabled the application of virtual surgical planning (VSP) toward personalization of surgical procedures and implants. Augmented reality superimposes digital content on the real-world reality. The aim of this technical note was to introduce the use of AR to evaluate and guide the insertion and positioning of a patient specific implant (PSI) for orbital floor blow-out fracture reconstruction. A 31-year-old, healthy male was injured and suffered from left orbital floor blow-out fracture. DICOM images of the CT scan were obtained for segmentation and for VSP, PSI design and 3D Printing. Patients’ file with the 3D objects was uploaded to AR software. The patient's left orbital floor was approached via the trans-conjunctival incision, PSI titanium plate was set in place and using AR Special head-mounted displays (HoloLens 1, Microsoft) the correct planned position of the plate was confirmed. The post-operative CT scan showed <em>a</em> <0.3 mm discrepancy in all axes of the plate in relation to the planned position. AR application in medicine and in maxillofacial surgery bears great potential, However, further investigation of this technology is required</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"7 ","pages":"Article 100072"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964122000261/pdfft?md5=d236cc2f91b4c95bf15115a6cd4ded59&pid=1-s2.0-S2666964122000261-main.pdf","citationCount":"0","resultStr":"{\"title\":\"“ Initial experience with augmented reality for treatment of an orbital floor fracture – A Technical Note ”\",\"authors\":\"Adeeb Zoabi , Daniel Oren , Shai Tejman-Yarden , Idan Redenski , Fares Kablan , Samer Srouji\",\"doi\":\"10.1016/j.stlm.2022.100072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The marked developments in the fields of 3D planning and printing in the last few decades, have enabled the application of virtual surgical planning (VSP) toward personalization of surgical procedures and implants. Augmented reality superimposes digital content on the real-world reality. The aim of this technical note was to introduce the use of AR to evaluate and guide the insertion and positioning of a patient specific implant (PSI) for orbital floor blow-out fracture reconstruction. A 31-year-old, healthy male was injured and suffered from left orbital floor blow-out fracture. DICOM images of the CT scan were obtained for segmentation and for VSP, PSI design and 3D Printing. Patients’ file with the 3D objects was uploaded to AR software. The patient's left orbital floor was approached via the trans-conjunctival incision, PSI titanium plate was set in place and using AR Special head-mounted displays (HoloLens 1, Microsoft) the correct planned position of the plate was confirmed. The post-operative CT scan showed <em>a</em> <0.3 mm discrepancy in all axes of the plate in relation to the planned position. AR application in medicine and in maxillofacial surgery bears great potential, However, further investigation of this technology is required</p></div>\",\"PeriodicalId\":72210,\"journal\":{\"name\":\"Annals of 3D printed medicine\",\"volume\":\"7 \",\"pages\":\"Article 100072\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666964122000261/pdfft?md5=d236cc2f91b4c95bf15115a6cd4ded59&pid=1-s2.0-S2666964122000261-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of 3D printed medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666964122000261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964122000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
“ Initial experience with augmented reality for treatment of an orbital floor fracture – A Technical Note ”
The marked developments in the fields of 3D planning and printing in the last few decades, have enabled the application of virtual surgical planning (VSP) toward personalization of surgical procedures and implants. Augmented reality superimposes digital content on the real-world reality. The aim of this technical note was to introduce the use of AR to evaluate and guide the insertion and positioning of a patient specific implant (PSI) for orbital floor blow-out fracture reconstruction. A 31-year-old, healthy male was injured and suffered from left orbital floor blow-out fracture. DICOM images of the CT scan were obtained for segmentation and for VSP, PSI design and 3D Printing. Patients’ file with the 3D objects was uploaded to AR software. The patient's left orbital floor was approached via the trans-conjunctival incision, PSI titanium plate was set in place and using AR Special head-mounted displays (HoloLens 1, Microsoft) the correct planned position of the plate was confirmed. The post-operative CT scan showed a <0.3 mm discrepancy in all axes of the plate in relation to the planned position. AR application in medicine and in maxillofacial surgery bears great potential, However, further investigation of this technology is required