{"title":"模块上的一个hecke动作","authors":"N. Abe","doi":"10.1017/s1474748023000130","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We construct an action of the affine Hecke category on the principal block <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000130_inline2.png\" />\n\t\t<jats:tex-math>\n$\\mathrm {Rep}_0(G_1T)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000130_inline3.png\" />\n\t\t<jats:tex-math>\n$G_1T$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-modules where <jats:italic>G</jats:italic> is a connected reductive group over an algebraically closed field of characteristic <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000130_inline4.png\" />\n\t\t<jats:tex-math>\n$p> 0$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, <jats:italic>T</jats:italic> a maximal torus of <jats:italic>G</jats:italic> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1474748023000130_inline5.png\" />\n\t\t<jats:tex-math>\n$G_1$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> the Frobenius kernel of <jats:italic>G</jats:italic>. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</jats:p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A HECKE ACTION ON -MODULES\",\"authors\":\"N. Abe\",\"doi\":\"10.1017/s1474748023000130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We construct an action of the affine Hecke category on the principal block <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000130_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\mathrm {Rep}_0(G_1T)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000130_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$G_1T$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-modules where <jats:italic>G</jats:italic> is a connected reductive group over an algebraically closed field of characteristic <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000130_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$p> 0$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, <jats:italic>T</jats:italic> a maximal torus of <jats:italic>G</jats:italic> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S1474748023000130_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$G_1$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> the Frobenius kernel of <jats:italic>G</jats:italic>. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.</jats:p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000130\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000130","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We construct an action of the affine Hecke category on the principal block
$\mathrm {Rep}_0(G_1T)$
of
$G_1T$
-modules where G is a connected reductive group over an algebraically closed field of characteristic
$p> 0$
, T a maximal torus of G and
$G_1$
the Frobenius kernel of G. To define it, we define a new category with a Hecke action which is equivalent to the combinatorial category defined by Andersen-Jantzen-Soergel.
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.