用微型电容去离子池辅助的微流体装置测量地表水中的硝酸盐浓度

IF 2.4 4区 环境科学与生态学 Q2 WATER RESOURCES
Hang Zhang, R. Zhao, Ying Yang, Yinyin Liu, Linchen Han
{"title":"用微型电容去离子池辅助的微流体装置测量地表水中的硝酸盐浓度","authors":"Hang Zhang, R. Zhao, Ying Yang, Yinyin Liu, Linchen Han","doi":"10.2166/wqrj.2023.010","DOIUrl":null,"url":null,"abstract":"\n Excessive nitrate in surface waters poses a great threat to the health of human beings. Traditional measuring tools require either hazardous chemicals or organic matter compensation. In this work, we proposed an online microfluidic device incorporated with a miniaturized capacitive deionization cell that separates organic matter and nitrate ions before the measurement and afterwards determines the nitrate concentration with a 235-nm LED. The optimal operational parameter setting, which is a combination of 600-s charging duration and 0.5-V cell potential, was also obtained in order to achieve the maximum fractionation of nitrate ions. Promising results were obtained by our new approach, revealing that this device could serve as a functional and effective tool for the determination of nitrate concentration in surface water.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring nitrate concentration in surface waters with a microfluidic device facilitated by a miniaturized capacitive deionization cell\",\"authors\":\"Hang Zhang, R. Zhao, Ying Yang, Yinyin Liu, Linchen Han\",\"doi\":\"10.2166/wqrj.2023.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Excessive nitrate in surface waters poses a great threat to the health of human beings. Traditional measuring tools require either hazardous chemicals or organic matter compensation. In this work, we proposed an online microfluidic device incorporated with a miniaturized capacitive deionization cell that separates organic matter and nitrate ions before the measurement and afterwards determines the nitrate concentration with a 235-nm LED. The optimal operational parameter setting, which is a combination of 600-s charging duration and 0.5-V cell potential, was also obtained in order to achieve the maximum fractionation of nitrate ions. Promising results were obtained by our new approach, revealing that this device could serve as a functional and effective tool for the determination of nitrate concentration in surface water.\",\"PeriodicalId\":23720,\"journal\":{\"name\":\"Water Quality Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wqrj.2023.010\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2023.010","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

地表水硝酸盐超标对人类的健康构成了极大的威胁。传统的测量工具需要有害化学品或有机物补偿。在这项工作中,我们提出了一种包含微型电容去离子电池的在线微流控装置,该装置在测量前分离有机物和硝酸盐离子,然后使用235 nm LED测定硝酸盐浓度。为实现硝酸盐离子的最大分馏,获得了600 s充电时间和0.5 v电池电位的最佳操作参数设置。结果表明,该装置可作为测定地表水中硝酸盐浓度的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring nitrate concentration in surface waters with a microfluidic device facilitated by a miniaturized capacitive deionization cell
Excessive nitrate in surface waters poses a great threat to the health of human beings. Traditional measuring tools require either hazardous chemicals or organic matter compensation. In this work, we proposed an online microfluidic device incorporated with a miniaturized capacitive deionization cell that separates organic matter and nitrate ions before the measurement and afterwards determines the nitrate concentration with a 235-nm LED. The optimal operational parameter setting, which is a combination of 600-s charging duration and 0.5-V cell potential, was also obtained in order to achieve the maximum fractionation of nitrate ions. Promising results were obtained by our new approach, revealing that this device could serve as a functional and effective tool for the determination of nitrate concentration in surface water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
8.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信