{"title":"复杂动力学中的同斜轨道、乘子谱和刚性定理","authors":"Zhuchao Ji, Junyi Xie","doi":"10.1017/fmp.2023.12","DOIUrl":null,"url":null,"abstract":"Abstract The aims of this paper are to answer several conjectures and questions about the multiplier spectrum of rational maps and giving new proofs of several rigidity theorems in complex dynamics by combining tools from complex and non-Archimedean dynamics. A remarkable theorem due to McMullen asserts that, aside from the flexible Lattès family, the multiplier spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. The proof relies on Thurston’s rigidity theorem for post-critically finite maps, in which Teichmüller theory is an essential tool. We will give a new proof of McMullen’s theorem (and therefore a new proof of Thurston’s theorem) without using quasiconformal maps or Teichmüller theory. We show that, aside from the flexible Lattès family, the length spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. This generalizes the aforementioned McMullen’s theorem. We will also prove a rigidity theorem for marked length spectrum. Similar ideas also yield a simple proof of a rigidity theorem due to Zdunik. We show that a rational map is exceptional if and only if one of the following holds: (i) the multipliers of periodic points are contained in the integer ring of an imaginary quadratic field, and (ii) all but finitely many periodic points have the same Lyapunov exponent. This solves two conjectures of Milnor.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics\",\"authors\":\"Zhuchao Ji, Junyi Xie\",\"doi\":\"10.1017/fmp.2023.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aims of this paper are to answer several conjectures and questions about the multiplier spectrum of rational maps and giving new proofs of several rigidity theorems in complex dynamics by combining tools from complex and non-Archimedean dynamics. A remarkable theorem due to McMullen asserts that, aside from the flexible Lattès family, the multiplier spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. The proof relies on Thurston’s rigidity theorem for post-critically finite maps, in which Teichmüller theory is an essential tool. We will give a new proof of McMullen’s theorem (and therefore a new proof of Thurston’s theorem) without using quasiconformal maps or Teichmüller theory. We show that, aside from the flexible Lattès family, the length spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. This generalizes the aforementioned McMullen’s theorem. We will also prove a rigidity theorem for marked length spectrum. Similar ideas also yield a simple proof of a rigidity theorem due to Zdunik. We show that a rational map is exceptional if and only if one of the following holds: (i) the multipliers of periodic points are contained in the integer ring of an imaginary quadratic field, and (ii) all but finitely many periodic points have the same Lyapunov exponent. This solves two conjectures of Milnor.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.12\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.12","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Homoclinic orbits, multiplier spectrum and rigidity theorems in complex dynamics
Abstract The aims of this paper are to answer several conjectures and questions about the multiplier spectrum of rational maps and giving new proofs of several rigidity theorems in complex dynamics by combining tools from complex and non-Archimedean dynamics. A remarkable theorem due to McMullen asserts that, aside from the flexible Lattès family, the multiplier spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. The proof relies on Thurston’s rigidity theorem for post-critically finite maps, in which Teichmüller theory is an essential tool. We will give a new proof of McMullen’s theorem (and therefore a new proof of Thurston’s theorem) without using quasiconformal maps or Teichmüller theory. We show that, aside from the flexible Lattès family, the length spectrum of periodic points determines the conjugacy class of rational maps up to finitely many choices. This generalizes the aforementioned McMullen’s theorem. We will also prove a rigidity theorem for marked length spectrum. Similar ideas also yield a simple proof of a rigidity theorem due to Zdunik. We show that a rational map is exceptional if and only if one of the following holds: (i) the multipliers of periodic points are contained in the integer ring of an imaginary quadratic field, and (ii) all but finitely many periodic points have the same Lyapunov exponent. This solves two conjectures of Milnor.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.