{"title":"改性剂阳离子场强对含硼铝硅酸盐玻璃氧化镁结构的影响","authors":"Manzila Islam Tuheen, Jincheng Du","doi":"10.1111/ijag.16599","DOIUrl":null,"url":null,"abstract":"<p>Network glass structures are commonly characterized by the network formers and their linkage but modifiers can also play an important role on various features of glass structures. In this work, we investigated the effect of cation field strength (CFS) of common modifier cations with large differences of CFS on the structures of aluminoborosilicate glasses by performing molecular dynamics (MD) simulations with recently developed potentials. It was found that modifier cations with higher CFS such as Mg<sup>2+</sup> significantly reduced the fraction of fourfold coordinated boron, suggesting that the cations with higher field strength favor nonbridging oxygen generation in the silicate network and are less effective for charge compensation. The findings from our MD simulations are compared with the results from NMR and Raman spectroscopy studies in the literature as well as those from other MD simulations. Insights of the CFS effect on glass structures and the structural role of Mg<sup>2+</sup> ions are gained from these simulations results and related discussions.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"13 4","pages":"554-567"},"PeriodicalIF":2.1000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of modifier cation field strength on the structures of magnesium oxide containing aluminoborosilicate glasses\",\"authors\":\"Manzila Islam Tuheen, Jincheng Du\",\"doi\":\"10.1111/ijag.16599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network glass structures are commonly characterized by the network formers and their linkage but modifiers can also play an important role on various features of glass structures. In this work, we investigated the effect of cation field strength (CFS) of common modifier cations with large differences of CFS on the structures of aluminoborosilicate glasses by performing molecular dynamics (MD) simulations with recently developed potentials. It was found that modifier cations with higher CFS such as Mg<sup>2+</sup> significantly reduced the fraction of fourfold coordinated boron, suggesting that the cations with higher field strength favor nonbridging oxygen generation in the silicate network and are less effective for charge compensation. The findings from our MD simulations are compared with the results from NMR and Raman spectroscopy studies in the literature as well as those from other MD simulations. Insights of the CFS effect on glass structures and the structural role of Mg<sup>2+</sup> ions are gained from these simulations results and related discussions.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"13 4\",\"pages\":\"554-567\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16599\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16599","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of modifier cation field strength on the structures of magnesium oxide containing aluminoborosilicate glasses
Network glass structures are commonly characterized by the network formers and their linkage but modifiers can also play an important role on various features of glass structures. In this work, we investigated the effect of cation field strength (CFS) of common modifier cations with large differences of CFS on the structures of aluminoborosilicate glasses by performing molecular dynamics (MD) simulations with recently developed potentials. It was found that modifier cations with higher CFS such as Mg2+ significantly reduced the fraction of fourfold coordinated boron, suggesting that the cations with higher field strength favor nonbridging oxygen generation in the silicate network and are less effective for charge compensation. The findings from our MD simulations are compared with the results from NMR and Raman spectroscopy studies in the literature as well as those from other MD simulations. Insights of the CFS effect on glass structures and the structural role of Mg2+ ions are gained from these simulations results and related discussions.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.