由正稳定跳变扰动的随机漫步的泛函极限定理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Iksanov, A. Pilipenko, B. Povar
{"title":"由正稳定跳变扰动的随机漫步的泛函极限定理","authors":"A. Iksanov, A. Pilipenko, B. Povar","doi":"10.3150/22-bej1515","DOIUrl":null,"url":null,"abstract":"Let $\\xi_1$, $\\xi_2,\\ldots$ be i.i.d. random variables of zero mean and finite variance and $\\eta_1$, $\\eta_2,\\ldots$ positive i.i.d. random variables whose distribution belongs to the domain of attraction of an $\\alpha$-stable distribution, $\\alpha\\in (0,1)$. The two collections are assumed independent. We consider a Markov chain with jumps of two types. If the present position of the Markov chain is positive, then the jump $\\xi_k$ occurs; if the present position of the Markov chain is nonpositive, then its next position is $\\eta_j$. We prove a functional limit theorem for this Markov chain under Donsker's scaling. The weak limit is a nonnegative process $(X(t))_{t\\geq 0}$ satisfying a stochastic equation ${\\rm d}X(t)={\\rm d}W(t)+ {\\rm d}U_\\alpha(L_X^{(0)}(t))$, where $W$ is a Brownian motion, $U_\\alpha$ is an $\\alpha$-stable subordinator which is independent of $W$, and $L_X^{(0)}$ is a local time of $X$ at $0$. Also, we explain that $X$ is a Feller Brownian motion with a `jump-type' exit from $0$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Functional limit theorems for random walks perturbed by positive alpha-stable jumps\",\"authors\":\"A. Iksanov, A. Pilipenko, B. Povar\",\"doi\":\"10.3150/22-bej1515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\xi_1$, $\\\\xi_2,\\\\ldots$ be i.i.d. random variables of zero mean and finite variance and $\\\\eta_1$, $\\\\eta_2,\\\\ldots$ positive i.i.d. random variables whose distribution belongs to the domain of attraction of an $\\\\alpha$-stable distribution, $\\\\alpha\\\\in (0,1)$. The two collections are assumed independent. We consider a Markov chain with jumps of two types. If the present position of the Markov chain is positive, then the jump $\\\\xi_k$ occurs; if the present position of the Markov chain is nonpositive, then its next position is $\\\\eta_j$. We prove a functional limit theorem for this Markov chain under Donsker's scaling. The weak limit is a nonnegative process $(X(t))_{t\\\\geq 0}$ satisfying a stochastic equation ${\\\\rm d}X(t)={\\\\rm d}W(t)+ {\\\\rm d}U_\\\\alpha(L_X^{(0)}(t))$, where $W$ is a Brownian motion, $U_\\\\alpha$ is an $\\\\alpha$-stable subordinator which is independent of $W$, and $L_X^{(0)}$ is a local time of $X$ at $0$. Also, we explain that $X$ is a Feller Brownian motion with a `jump-type' exit from $0$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/22-bej1515\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1515","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

设$\si_1$,$\si_2,\ldots$为零均值和有限方差的i.i.d.随机变量,$\eta_1$,$\eta _2,\ldots$正i.d.随机变数,其分布属于$\alpha$稳定分布的吸引域,$\alpha \in(0,1)$。假定这两个集合是独立的。我们考虑具有两种类型跳跃的马尔可夫链。如果马尔可夫链的当前位置是正的,则发生跳跃$\si_k$;如果马尔可夫链的当前位置是非正的,那么它的下一个位置是$\eta_j$。证明了该马尔可夫链在Donsker标度下的一个函数极限定理。弱极限是满足随机方程${\rm d}X(t)={\rmd}W(t)+{\RMd}U_\alpha(L_X^{(0)}(t))$的非负过程$(X(t。此外,我们还解释了$X$是从$0$退出的“跳跃型”Feller-Brownian运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional limit theorems for random walks perturbed by positive alpha-stable jumps
Let $\xi_1$, $\xi_2,\ldots$ be i.i.d. random variables of zero mean and finite variance and $\eta_1$, $\eta_2,\ldots$ positive i.i.d. random variables whose distribution belongs to the domain of attraction of an $\alpha$-stable distribution, $\alpha\in (0,1)$. The two collections are assumed independent. We consider a Markov chain with jumps of two types. If the present position of the Markov chain is positive, then the jump $\xi_k$ occurs; if the present position of the Markov chain is nonpositive, then its next position is $\eta_j$. We prove a functional limit theorem for this Markov chain under Donsker's scaling. The weak limit is a nonnegative process $(X(t))_{t\geq 0}$ satisfying a stochastic equation ${\rm d}X(t)={\rm d}W(t)+ {\rm d}U_\alpha(L_X^{(0)}(t))$, where $W$ is a Brownian motion, $U_\alpha$ is an $\alpha$-stable subordinator which is independent of $W$, and $L_X^{(0)}$ is a local time of $X$ at $0$. Also, we explain that $X$ is a Feller Brownian motion with a `jump-type' exit from $0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信