{"title":"PEDOT在生物电子医学中的应用","authors":"C. Boehler, Z. Aqrawe, M. Asplund","doi":"10.2217/BEM-2019-0014","DOIUrl":null,"url":null,"abstract":"The widespread use of conducting polymers, especially poly(3,4-ethylene dioxythiophene) (PEDOT), within the space of bioelectronics has enabled improvements, both in terms of electrochemistry and functional versatility, of conventional metallic electrodes. This short review aims to provide an overview of how PEDOT coatings have contributed to functionalizing existing bioelectronics, the challenges which meet conducting polymer coatings from a regulatory and stability point of view and the possibilities to bring PEDOT-based coatings into large-scale clinical applications. Finally, their potential use for enabling new technologies for the field of bioelectronics as biodegradable, stretchable and slow-stimulation materials will be discussed.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0014","citationCount":"64","resultStr":"{\"title\":\"Applications of PEDOT in bioelectronic medicine\",\"authors\":\"C. Boehler, Z. Aqrawe, M. Asplund\",\"doi\":\"10.2217/BEM-2019-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread use of conducting polymers, especially poly(3,4-ethylene dioxythiophene) (PEDOT), within the space of bioelectronics has enabled improvements, both in terms of electrochemistry and functional versatility, of conventional metallic electrodes. This short review aims to provide an overview of how PEDOT coatings have contributed to functionalizing existing bioelectronics, the challenges which meet conducting polymer coatings from a regulatory and stability point of view and the possibilities to bring PEDOT-based coatings into large-scale clinical applications. Finally, their potential use for enabling new technologies for the field of bioelectronics as biodegradable, stretchable and slow-stimulation materials will be discussed.\",\"PeriodicalId\":72364,\"journal\":{\"name\":\"Bioelectronics in medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2217/BEM-2019-0014\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectronics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/BEM-2019-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/BEM-2019-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The widespread use of conducting polymers, especially poly(3,4-ethylene dioxythiophene) (PEDOT), within the space of bioelectronics has enabled improvements, both in terms of electrochemistry and functional versatility, of conventional metallic electrodes. This short review aims to provide an overview of how PEDOT coatings have contributed to functionalizing existing bioelectronics, the challenges which meet conducting polymer coatings from a regulatory and stability point of view and the possibilities to bring PEDOT-based coatings into large-scale clinical applications. Finally, their potential use for enabling new technologies for the field of bioelectronics as biodegradable, stretchable and slow-stimulation materials will be discussed.