同种非洲羚羊的异速行为和生态位分化

IF 7.1 1区 环境科学与生态学 Q1 ECOLOGY
Joshua H. Daskin, Justine A. Becker, Tyler R. Kartzinel, Arjun B. Potter, Reena H. Walker, Fredrik A. A. Eriksson, Courtney Buoncore, Alexander Getraer, Ryan A. Long, Robert M. Pringle
{"title":"同种非洲羚羊的异速行为和生态位分化","authors":"Joshua H. Daskin,&nbsp;Justine A. Becker,&nbsp;Tyler R. Kartzinel,&nbsp;Arjun B. Potter,&nbsp;Reena H. Walker,&nbsp;Fredrik A. A. Eriksson,&nbsp;Courtney Buoncore,&nbsp;Alexander Getraer,&nbsp;Ryan A. Long,&nbsp;Robert M. Pringle","doi":"10.1002/ecm.1549","DOIUrl":null,"url":null,"abstract":"<p>Size-structured differences in resource use stabilize species coexistence in animal communities, but what behavioral mechanisms underpin these niche differences? Behavior is constrained by morphological and physiological traits that scale allometrically with body size, yet the degree to which behaviors exhibit allometric scaling remains unclear; empirical datasets often encompass broad variation in environmental context and phylogenetic history, which complicates the detection and interpretation of scaling relationships between size and behavior. We studied the movement and foraging behaviors of three sympatric, congeneric spiral-horned antelope species (<i>Tragelaphus</i> spp.) that differ in body mass—bushbuck (26–40 kg), nyala (57–83 kg), and kudu (80–142 kg)—in an African savanna ecosystem where (i) food was patchily distributed due to ecosystem engineering by fungus-farming termites and (ii) predation risk was low due to the extirpation of several large carnivores. Because foraging behavior is directly linked to traits that scale allometrically with size (e.g., metabolic rate, locomotion), we hypothesized that habitat use and diet selection would likewise exhibit nonlinear scaling relationships. All three antelope species selected habitat near termitaria, which are hotspots of abundant, high-quality forage. Experimental removal of forage from termite mounds sharply reduced use of those mounds by bushbuck, confirming that habitat selection was resource driven. Strength of selection for termite mounds scaled negatively and nonlinearly with body mass, as did recursion (frequency with which individuals revisited locations), whereas home-range area and mean step length scaled positively and nonlinearly with body mass. All species disproportionately ate mound-associated plant taxa; nonetheless, forage selectivity and dietary composition, richness, and quality all differed among species, reflecting the partitioning of shared food resources. Dietary protein exhibited the theoretically predicted negative allometric relationship with body mass, whereas digestible-energy content scaled positively. Our results demonstrate cryptic size-based separation along spatial and dietary niche axes—despite superficial similarities among species—consistent with the idea that body-size differentiation is driven by selection for divergent resource-acquisition strategies, which in turn underpin coexistence. Foraging and space-use behaviors were nonlinearly related to body mass, supporting the hypothesis that behavior scales allometrically with size. However, explaining the variable functional forms of these relationships is a challenge for future research.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1549","citationCount":"2","resultStr":"{\"title\":\"Allometry of behavior and niche differentiation among congeneric African antelopes\",\"authors\":\"Joshua H. Daskin,&nbsp;Justine A. Becker,&nbsp;Tyler R. Kartzinel,&nbsp;Arjun B. Potter,&nbsp;Reena H. Walker,&nbsp;Fredrik A. A. Eriksson,&nbsp;Courtney Buoncore,&nbsp;Alexander Getraer,&nbsp;Ryan A. Long,&nbsp;Robert M. Pringle\",\"doi\":\"10.1002/ecm.1549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Size-structured differences in resource use stabilize species coexistence in animal communities, but what behavioral mechanisms underpin these niche differences? Behavior is constrained by morphological and physiological traits that scale allometrically with body size, yet the degree to which behaviors exhibit allometric scaling remains unclear; empirical datasets often encompass broad variation in environmental context and phylogenetic history, which complicates the detection and interpretation of scaling relationships between size and behavior. We studied the movement and foraging behaviors of three sympatric, congeneric spiral-horned antelope species (<i>Tragelaphus</i> spp.) that differ in body mass—bushbuck (26–40 kg), nyala (57–83 kg), and kudu (80–142 kg)—in an African savanna ecosystem where (i) food was patchily distributed due to ecosystem engineering by fungus-farming termites and (ii) predation risk was low due to the extirpation of several large carnivores. Because foraging behavior is directly linked to traits that scale allometrically with size (e.g., metabolic rate, locomotion), we hypothesized that habitat use and diet selection would likewise exhibit nonlinear scaling relationships. All three antelope species selected habitat near termitaria, which are hotspots of abundant, high-quality forage. Experimental removal of forage from termite mounds sharply reduced use of those mounds by bushbuck, confirming that habitat selection was resource driven. Strength of selection for termite mounds scaled negatively and nonlinearly with body mass, as did recursion (frequency with which individuals revisited locations), whereas home-range area and mean step length scaled positively and nonlinearly with body mass. All species disproportionately ate mound-associated plant taxa; nonetheless, forage selectivity and dietary composition, richness, and quality all differed among species, reflecting the partitioning of shared food resources. Dietary protein exhibited the theoretically predicted negative allometric relationship with body mass, whereas digestible-energy content scaled positively. Our results demonstrate cryptic size-based separation along spatial and dietary niche axes—despite superficial similarities among species—consistent with the idea that body-size differentiation is driven by selection for divergent resource-acquisition strategies, which in turn underpin coexistence. Foraging and space-use behaviors were nonlinearly related to body mass, supporting the hypothesis that behavior scales allometrically with size. However, explaining the variable functional forms of these relationships is a challenge for future research.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1549\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1549\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1549","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

资源利用的大小结构差异稳定了动物群落中的物种共存,但是什么行为机制支撑了这些生态位差异?行为受到形态和生理特征的限制,这些特征随着体型的不同而不同,但行为表现出不同尺度的程度尚不清楚;经验数据集通常包含环境背景和系统发育史的广泛变化,这使检测和解释大小和行为之间的比例关系变得复杂。我们研究了三种身体质量不同的同域、同类螺旋角羚羊(Tragelaphus spp.)的运动和觅食行为,即山鹿(26-40公斤)、尼亚拉(57-83公斤)和库杜,反映了共享食物资源的分配。膳食蛋白质与体重呈理论预测的负异速关系,而可消化能量含量则呈正相关。我们的研究结果表明,尽管物种之间有着表面上的相似性,但沿着空间和饮食生态位轴,基于体型的隐性分离与体型分化是由不同资源获取策略的选择驱动的这一观点一致,而不同资源获取策略反过来又是共存的基础。觅食和空间使用行为与体重呈非线性相关,这支持了行为随体型而非对称的假设。然而,解释这些关系的可变函数形式是未来研究的一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Allometry of behavior and niche differentiation among congeneric African antelopes

Allometry of behavior and niche differentiation among congeneric African antelopes

Size-structured differences in resource use stabilize species coexistence in animal communities, but what behavioral mechanisms underpin these niche differences? Behavior is constrained by morphological and physiological traits that scale allometrically with body size, yet the degree to which behaviors exhibit allometric scaling remains unclear; empirical datasets often encompass broad variation in environmental context and phylogenetic history, which complicates the detection and interpretation of scaling relationships between size and behavior. We studied the movement and foraging behaviors of three sympatric, congeneric spiral-horned antelope species (Tragelaphus spp.) that differ in body mass—bushbuck (26–40 kg), nyala (57–83 kg), and kudu (80–142 kg)—in an African savanna ecosystem where (i) food was patchily distributed due to ecosystem engineering by fungus-farming termites and (ii) predation risk was low due to the extirpation of several large carnivores. Because foraging behavior is directly linked to traits that scale allometrically with size (e.g., metabolic rate, locomotion), we hypothesized that habitat use and diet selection would likewise exhibit nonlinear scaling relationships. All three antelope species selected habitat near termitaria, which are hotspots of abundant, high-quality forage. Experimental removal of forage from termite mounds sharply reduced use of those mounds by bushbuck, confirming that habitat selection was resource driven. Strength of selection for termite mounds scaled negatively and nonlinearly with body mass, as did recursion (frequency with which individuals revisited locations), whereas home-range area and mean step length scaled positively and nonlinearly with body mass. All species disproportionately ate mound-associated plant taxa; nonetheless, forage selectivity and dietary composition, richness, and quality all differed among species, reflecting the partitioning of shared food resources. Dietary protein exhibited the theoretically predicted negative allometric relationship with body mass, whereas digestible-energy content scaled positively. Our results demonstrate cryptic size-based separation along spatial and dietary niche axes—despite superficial similarities among species—consistent with the idea that body-size differentiation is driven by selection for divergent resource-acquisition strategies, which in turn underpin coexistence. Foraging and space-use behaviors were nonlinearly related to body mass, supporting the hypothesis that behavior scales allometrically with size. However, explaining the variable functional forms of these relationships is a challenge for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Monographs
Ecological Monographs 环境科学-生态学
CiteScore
12.20
自引率
0.00%
发文量
61
审稿时长
3 months
期刊介绍: The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology. Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message. Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology. Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions. In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信