{"title":"光处理水/真海水中H2O2的微批流反应器","authors":"Aswin Gopakumar, Tong Zhang, Shoubhik Das","doi":"10.1007/s41981-023-00257-1","DOIUrl":null,"url":null,"abstract":"<div><p>Photocatalytic generation of H<sub>2</sub>O<sub>2</sub> with heterogeneous catalysts has attracted much attentions and impressive strategies have been used to increase the photocatalytic efficiency. However, applications of these strategies to large scale are still underdeveloped. For this reason, development of flow photocatalytic strategy is highly necessary. Considering this, we have developed a serial micro-batch flow reactor for the generation of H<sub>2</sub>O<sub>2</sub> which could easily scale up the reaction to1L scale with high reproducibility with the modified g-C<sub>3</sub>N<sub>4</sub>. With this flow reactor, the generated concentration of H<sub>2</sub>O<sub>2</sub> has been reached to 6.89 mM and 5.89 mM in pure water and seawater, respectively.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"13 2","pages":"185 - 192"},"PeriodicalIF":2.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Micro-Batch flow reactor for the photoproduction of H2O2 from water/real seawater\",\"authors\":\"Aswin Gopakumar, Tong Zhang, Shoubhik Das\",\"doi\":\"10.1007/s41981-023-00257-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photocatalytic generation of H<sub>2</sub>O<sub>2</sub> with heterogeneous catalysts has attracted much attentions and impressive strategies have been used to increase the photocatalytic efficiency. However, applications of these strategies to large scale are still underdeveloped. For this reason, development of flow photocatalytic strategy is highly necessary. Considering this, we have developed a serial micro-batch flow reactor for the generation of H<sub>2</sub>O<sub>2</sub> which could easily scale up the reaction to1L scale with high reproducibility with the modified g-C<sub>3</sub>N<sub>4</sub>. With this flow reactor, the generated concentration of H<sub>2</sub>O<sub>2</sub> has been reached to 6.89 mM and 5.89 mM in pure water and seawater, respectively.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"13 2\",\"pages\":\"185 - 192\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00257-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00257-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Micro-Batch flow reactor for the photoproduction of H2O2 from water/real seawater
Photocatalytic generation of H2O2 with heterogeneous catalysts has attracted much attentions and impressive strategies have been used to increase the photocatalytic efficiency. However, applications of these strategies to large scale are still underdeveloped. For this reason, development of flow photocatalytic strategy is highly necessary. Considering this, we have developed a serial micro-batch flow reactor for the generation of H2O2 which could easily scale up the reaction to1L scale with high reproducibility with the modified g-C3N4. With this flow reactor, the generated concentration of H2O2 has been reached to 6.89 mM and 5.89 mM in pure water and seawater, respectively.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.