城市轨道交通系统列车调度与短时转向策略的鲁棒协同优化

IF 3.4 2区 工程技术 Q2 TRANSPORTATION
Ling Zhu, Shukai Li, Yuting Hu, Bin Jia
{"title":"城市轨道交通系统列车调度与短时转向策略的鲁棒协同优化","authors":"Ling Zhu, Shukai Li, Yuting Hu, Bin Jia","doi":"10.1080/21680566.2022.2048120","DOIUrl":null,"url":null,"abstract":"This paper investigates the robust collaborative train timetabling optimization problem by integrating short-turning strategy and train circulation plan while considering the uncertainty in passenger demand. The passenger dynamics equations are proposed to represent the relationship among headways, short-turning services, and passenger load. A mixed-integer nonlinear programming (MINLP) model is constructed to balance train utilization and stranded passengers. The extra variables are introduced to linearize the nonlinear constraints and convert the original model into a robust counterpart model according to the strong duality theory. Finally, two numerical experiments are carried out to verify the validity of the train timetabling model integrating with short-turning strategies. The study shows that the proposed strategy can better support the balance between stranded passengers and train utilization compared to other regular strategies. Moreover, the results indicate that robust strategies perform well in the trade-off between the optimality and the level of conservatism of the solutions.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust collaborative optimization for train timetabling and short-turning strategy in urban rail transit systems\",\"authors\":\"Ling Zhu, Shukai Li, Yuting Hu, Bin Jia\",\"doi\":\"10.1080/21680566.2022.2048120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the robust collaborative train timetabling optimization problem by integrating short-turning strategy and train circulation plan while considering the uncertainty in passenger demand. The passenger dynamics equations are proposed to represent the relationship among headways, short-turning services, and passenger load. A mixed-integer nonlinear programming (MINLP) model is constructed to balance train utilization and stranded passengers. The extra variables are introduced to linearize the nonlinear constraints and convert the original model into a robust counterpart model according to the strong duality theory. Finally, two numerical experiments are carried out to verify the validity of the train timetabling model integrating with short-turning strategies. The study shows that the proposed strategy can better support the balance between stranded passengers and train utilization compared to other regular strategies. Moreover, the results indicate that robust strategies perform well in the trade-off between the optimality and the level of conservatism of the solutions.\",\"PeriodicalId\":48872,\"journal\":{\"name\":\"Transportmetrica B-Transport Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica B-Transport Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21680566.2022.2048120\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2022.2048120","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust collaborative optimization for train timetabling and short-turning strategy in urban rail transit systems
This paper investigates the robust collaborative train timetabling optimization problem by integrating short-turning strategy and train circulation plan while considering the uncertainty in passenger demand. The passenger dynamics equations are proposed to represent the relationship among headways, short-turning services, and passenger load. A mixed-integer nonlinear programming (MINLP) model is constructed to balance train utilization and stranded passengers. The extra variables are introduced to linearize the nonlinear constraints and convert the original model into a robust counterpart model according to the strong duality theory. Finally, two numerical experiments are carried out to verify the validity of the train timetabling model integrating with short-turning strategies. The study shows that the proposed strategy can better support the balance between stranded passengers and train utilization compared to other regular strategies. Moreover, the results indicate that robust strategies perform well in the trade-off between the optimality and the level of conservatism of the solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica B-Transport Dynamics
Transportmetrica B-Transport Dynamics TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
5.00
自引率
21.40%
发文量
53
期刊介绍: Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”. Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data. The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信