平面扇区中$p$-调和函数的估计

IF 0.8 4区 数学 Q2 MATHEMATICS
N. L. Lundstrom, J. Singh
{"title":"平面扇区中$p$-调和函数的估计","authors":"N. L. Lundstrom, J. Singh","doi":"10.4310/arkiv.2023.v61.n1.a8","DOIUrl":null,"url":null,"abstract":"Suppose that $p \\in (1,\\infty]$, $\\nu \\in [1/2,\\infty)$, $\\mathcal{S}_\\nu = \\left\\{ (x_1,x_2) \\in \\mathbb{R}^2 \\setminus \\{(0, 0)\\}: |\\phi|<\\frac{\\pi}{2\\nu}\\right\\}$, where $\\phi$ is the polar angle of $(x_1,x_2)$. Let $R>0$ and $\\omega_p(x)$ be the $p$-harmonic measure of $\\partial B(0,R) \\cap \\mathcal{S}_\\nu$ at $x$ with respect to $B(0, R)\\cap \\mathcal{S}_\\nu$. We prove that there exists a constant $C$ such that \\begin{align*} C^{-1}\\left(\\frac{|x|}{R}\\right)^{k(\\nu,p)} \\, \\leq \\omega_p(x) \\, \\leq C \\left(\\frac{|x|}{R}\\right)^{k(\\nu,p)} \\end{align*} whenever $x\\in B(0,R) \\cap \\mathcal{S}_{2\\nu}$ and where the exponent $k(\\nu,p)$ is given explicitly as a function of $\\nu$ and $p$. Using this estimate we derive local growth estimates for $p$-sub- and $p$-superharmonic functions in planar domains which are locally approximable by sectors, e.g., we conclude bounds of the rate of convergence near the boundary where the domain has an inwardly or outwardly pointed cusp. Using the estimates of $p$-harmonic measure we also derive a sharp Phragmen-Lindel\\\"of theorem for $p$-subharmonic functions in the unbounded sector $\\mathcal{S}_\\nu$. Moreover, if $p = \\infty$ then the above mentioned estimates extend from the setting of two-dimensional sectors to cones in $\\mathbb{R}^n$. Finally, when $\\nu \\in (1/2, \\infty)$ and $p\\in (1,\\infty)$ we prove uniqueness (modulo normalization) of positive $p$-harmonic functions in $\\mathcal{S}_\\nu$ vanishing on $\\partial\\mathcal{S}_\\nu$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimates of $p$-harmonic functions in planar sectors\",\"authors\":\"N. L. Lundstrom, J. Singh\",\"doi\":\"10.4310/arkiv.2023.v61.n1.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose that $p \\\\in (1,\\\\infty]$, $\\\\nu \\\\in [1/2,\\\\infty)$, $\\\\mathcal{S}_\\\\nu = \\\\left\\\\{ (x_1,x_2) \\\\in \\\\mathbb{R}^2 \\\\setminus \\\\{(0, 0)\\\\}: |\\\\phi|<\\\\frac{\\\\pi}{2\\\\nu}\\\\right\\\\}$, where $\\\\phi$ is the polar angle of $(x_1,x_2)$. Let $R>0$ and $\\\\omega_p(x)$ be the $p$-harmonic measure of $\\\\partial B(0,R) \\\\cap \\\\mathcal{S}_\\\\nu$ at $x$ with respect to $B(0, R)\\\\cap \\\\mathcal{S}_\\\\nu$. We prove that there exists a constant $C$ such that \\\\begin{align*} C^{-1}\\\\left(\\\\frac{|x|}{R}\\\\right)^{k(\\\\nu,p)} \\\\, \\\\leq \\\\omega_p(x) \\\\, \\\\leq C \\\\left(\\\\frac{|x|}{R}\\\\right)^{k(\\\\nu,p)} \\\\end{align*} whenever $x\\\\in B(0,R) \\\\cap \\\\mathcal{S}_{2\\\\nu}$ and where the exponent $k(\\\\nu,p)$ is given explicitly as a function of $\\\\nu$ and $p$. Using this estimate we derive local growth estimates for $p$-sub- and $p$-superharmonic functions in planar domains which are locally approximable by sectors, e.g., we conclude bounds of the rate of convergence near the boundary where the domain has an inwardly or outwardly pointed cusp. Using the estimates of $p$-harmonic measure we also derive a sharp Phragmen-Lindel\\\\\\\"of theorem for $p$-subharmonic functions in the unbounded sector $\\\\mathcal{S}_\\\\nu$. Moreover, if $p = \\\\infty$ then the above mentioned estimates extend from the setting of two-dimensional sectors to cones in $\\\\mathbb{R}^n$. Finally, when $\\\\nu \\\\in (1/2, \\\\infty)$ and $p\\\\in (1,\\\\infty)$ we prove uniqueness (modulo normalization) of positive $p$-harmonic functions in $\\\\mathcal{S}_\\\\nu$ vanishing on $\\\\partial\\\\mathcal{S}_\\\\nu$.\",\"PeriodicalId\":55569,\"journal\":{\"name\":\"Arkiv for Matematik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arkiv for Matematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/arkiv.2023.v61.n1.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n1.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

假设 $p \in (1,\infty]$, $\nu \in [1/2,\infty)$, $\mathcal{S}_\nu = \left\{ (x_1,x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}: |\phi|0$ 和 $\omega_p(x)$ 做一个 $p$的谐波测度 $\partial B(0,R) \cap \mathcal{S}_\nu$ 在 $x$ 关于 $B(0, R)\cap \mathcal{S}_\nu$。我们证明存在一个常数 $C$ 这样 \begin{align*} C^{-1}\left(\frac{|x|}{R}\right)^{k(\nu,p)} \, \leq \omega_p(x) \, \leq C \left(\frac{|x|}{R}\right)^{k(\nu,p)} \end{align*} 无论何时 $x\in B(0,R) \cap \mathcal{S}_{2\nu}$ 指数在哪里 $k(\nu,p)$ 是明确给出的函数 $\nu$ 和 $p$。利用这一估计,我们得出了当地的增长估计 $p$-sub- and $p$-局部可被扇形逼近的平面区域上的超调和函数,例如,我们在区域具有向内或向外尖尖的边界附近得出收敛速度的界限。使用 $p$-谐波测度,我们也得到了一个尖锐的Phragmen-Lindelöf定理 $p$-无界扇区中的次谐波函数 $\mathcal{S}_\nu$。此外,如果 $p = \infty$ 然后,上述估计从二维扇形的设置扩展到中锥的设置 $\mathbb{R}^n$。最后,当 $\nu \in (1/2, \infty)$ 和 $p\in (1,\infty)$ 证明了正的唯一性(模归一化) $p$-调和函数 $\mathcal{S}_\nu$ 消失在 $\partial\mathcal{S}_\nu$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates of $p$-harmonic functions in planar sectors
Suppose that $p \in (1,\infty]$, $\nu \in [1/2,\infty)$, $\mathcal{S}_\nu = \left\{ (x_1,x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}: |\phi|<\frac{\pi}{2\nu}\right\}$, where $\phi$ is the polar angle of $(x_1,x_2)$. Let $R>0$ and $\omega_p(x)$ be the $p$-harmonic measure of $\partial B(0,R) \cap \mathcal{S}_\nu$ at $x$ with respect to $B(0, R)\cap \mathcal{S}_\nu$. We prove that there exists a constant $C$ such that \begin{align*} C^{-1}\left(\frac{|x|}{R}\right)^{k(\nu,p)} \, \leq \omega_p(x) \, \leq C \left(\frac{|x|}{R}\right)^{k(\nu,p)} \end{align*} whenever $x\in B(0,R) \cap \mathcal{S}_{2\nu}$ and where the exponent $k(\nu,p)$ is given explicitly as a function of $\nu$ and $p$. Using this estimate we derive local growth estimates for $p$-sub- and $p$-superharmonic functions in planar domains which are locally approximable by sectors, e.g., we conclude bounds of the rate of convergence near the boundary where the domain has an inwardly or outwardly pointed cusp. Using the estimates of $p$-harmonic measure we also derive a sharp Phragmen-Lindel\"of theorem for $p$-subharmonic functions in the unbounded sector $\mathcal{S}_\nu$. Moreover, if $p = \infty$ then the above mentioned estimates extend from the setting of two-dimensional sectors to cones in $\mathbb{R}^n$. Finally, when $\nu \in (1/2, \infty)$ and $p\in (1,\infty)$ we prove uniqueness (modulo normalization) of positive $p$-harmonic functions in $\mathcal{S}_\nu$ vanishing on $\partial\mathcal{S}_\nu$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信