衍生复几何中的GAGA定理

IF 0.9 1区 数学 Q2 MATHEMATICS
Mauro Porta
{"title":"衍生复几何中的GAGA定理","authors":"Mauro Porta","doi":"10.1090/JAG/716","DOIUrl":null,"url":null,"abstract":"In this paper, we expand the foundations of derived complex analytic geometry introduced by Jacob Lurie in 2011. We start by studying the analytification functor and its properties. In particular, we prove that for a derived complex scheme locally almost of finite presentation \n\n \n X\n X\n \n\n, the canonical map \n\n \n \n \n X\n \n \n a\n n\n \n \n \n →\n X\n \n X^{\\mathrm {an}} \\to X\n \n\n is flat in the derived sense. Next, we provide a comparison result relating derived complex analytic spaces to geometric stacks. Using these results and building on the previous work of the author and Tony Yue Yu, we prove a derived version of the GAGA theorems. As an application, we prove that the infinitesimal deformation theory of a derived complex analytic moduli problem is governed by a differential graded Lie algebra.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/716","citationCount":"11","resultStr":"{\"title\":\"GAGA theorems in derived complex geometry\",\"authors\":\"Mauro Porta\",\"doi\":\"10.1090/JAG/716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we expand the foundations of derived complex analytic geometry introduced by Jacob Lurie in 2011. We start by studying the analytification functor and its properties. In particular, we prove that for a derived complex scheme locally almost of finite presentation \\n\\n \\n X\\n X\\n \\n\\n, the canonical map \\n\\n \\n \\n \\n X\\n \\n \\n a\\n n\\n \\n \\n \\n →\\n X\\n \\n X^{\\\\mathrm {an}} \\\\to X\\n \\n\\n is flat in the derived sense. Next, we provide a comparison result relating derived complex analytic spaces to geometric stacks. Using these results and building on the previous work of the author and Tony Yue Yu, we prove a derived version of the GAGA theorems. As an application, we prove that the infinitesimal deformation theory of a derived complex analytic moduli problem is governed by a differential graded Lie algebra.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/JAG/716\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/716\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/716","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们扩展了由Jacob Lurie在2011年引入的衍生复解析几何的基础。我们首先研究分析函子及其性质。特别地,我们证明了对于有限表示X X的导出的局部概复格式,X an→X X^{\mathrm {an}} \到X的正则映射在导出意义上是平坦的。接下来,我们提供了一个关于推导的复解析空间与几何堆栈的比较结果。利用这些结果,并在作者和余乐宇之前的工作的基础上,我们证明了GAGA定理的一个派生版本。作为一个应用,我们证明了一类衍生的复解析模问题的无穷小变形理论是由微分梯度李代数控制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GAGA theorems in derived complex geometry
In this paper, we expand the foundations of derived complex analytic geometry introduced by Jacob Lurie in 2011. We start by studying the analytification functor and its properties. In particular, we prove that for a derived complex scheme locally almost of finite presentation X X , the canonical map X a n → X X^{\mathrm {an}} \to X is flat in the derived sense. Next, we provide a comparison result relating derived complex analytic spaces to geometric stacks. Using these results and building on the previous work of the author and Tony Yue Yu, we prove a derived version of the GAGA theorems. As an application, we prove that the infinitesimal deformation theory of a derived complex analytic moduli problem is governed by a differential graded Lie algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信