每个塞勒姆数都是两个皮索数的差

IF 0.7 3区 数学 Q2 MATHEMATICS
A. Dubickas
{"title":"每个塞勒姆数都是两个皮索数的差","authors":"A. Dubickas","doi":"10.1017/S0013091523000433","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we prove that every Salem number is expressible as a difference of two Pisot numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many positive integers n for which $\\alpha^{2n-1}-\\alpha^n+\\alpha$ and $\\alpha^{2n-1}-\\alpha^n$ are both Pisot numbers of degree d and that the smallest such n is at most $6^{d/2-1}+1$. We also prove that every real positive algebraic number can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem number can be written in this way.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"66 1","pages":"862 - 867"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Every Salem number is a difference of two Pisot numbers\",\"authors\":\"A. Dubickas\",\"doi\":\"10.1017/S0013091523000433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we prove that every Salem number is expressible as a difference of two Pisot numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many positive integers n for which $\\\\alpha^{2n-1}-\\\\alpha^n+\\\\alpha$ and $\\\\alpha^{2n-1}-\\\\alpha^n$ are both Pisot numbers of degree d and that the smallest such n is at most $6^{d/2-1}+1$. We also prove that every real positive algebraic number can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem number can be written in this way.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":\"66 1\",\"pages\":\"862 - 867\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000433\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000433","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们证明了每个Salem数都可以表示为两个Pisot数的差。更准确地说,我们证明了对于d阶的每个Salem数α,都有无限多个正整数n,其中$\alpha^{2n-1}-\alpha^n+\alpha$和$\alpha^{2n-1}-\α^n$都是d次的皮索数,并且最小的n至多为$6^{d/2-1}+1$。我们还证明了每一个实正代数数都可以表示为两个Pisot数的商。早些时候,塞勒姆自己已经证明了每个塞勒姆数都可以这样写。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Every Salem number is a difference of two Pisot numbers
Abstract In this note, we prove that every Salem number is expressible as a difference of two Pisot numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many positive integers n for which $\alpha^{2n-1}-\alpha^n+\alpha$ and $\alpha^{2n-1}-\alpha^n$ are both Pisot numbers of degree d and that the smallest such n is at most $6^{d/2-1}+1$. We also prove that every real positive algebraic number can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem number can be written in this way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信