一维平均曲率算子问题节点解的S形分量

IF 0.4 4区 数学 Q4 MATHEMATICS
Ruyun Ma, Zhiqian He, Xiaoxiao Su
{"title":"一维平均曲率算子问题节点解的S形分量","authors":"Ruyun Ma, Zhiqian He, Xiaoxiao Su","doi":"10.21136/CMJ.2023.0027-20","DOIUrl":null,"url":null,"abstract":"Let E = {u ∈ C1[0, 1]: u(0) = u(1) = 0}. Let Skv with v = {+, −} denote the set of functions u ∈ E which have exactly k − 1 interior nodal zeros in (0, 1) and vu be positive near 0. We show the existence of S-shaped connected component of Skv-solutions of the problem {(u′1−u′2)′+λa(x)f(u)=0,x∈(0,1),u(0)=u(1)=0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\left\\{ {\\begin{array}{*{20}{c}} {\\begin{array}{*{20}{c}} {{{\\left( {\\frac{{u'}}{{\\sqrt {1 - {{u'}^2}} }}} \\right)}^\\prime } + \\lambda a(x)f(u) = 0,}&{x \\in (0,1)} \\end{array}} \\\\ {u(0) = u(1) = 0,\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;} \\end{array}} \\right.$$\\end{document} where λ > 0 is a parameter, a ∈ C([0, 1], (0, ∞)). We determine the intervals of parameter λ in which the above problem has one, two or three Skv-solutions. The proofs of the main results are based upon the bifurcation technique.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"321 - 333"},"PeriodicalIF":0.4000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-shaped component of nodal solutions for problem involving one-dimension mean curvature operator\",\"authors\":\"Ruyun Ma, Zhiqian He, Xiaoxiao Su\",\"doi\":\"10.21136/CMJ.2023.0027-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let E = {u ∈ C1[0, 1]: u(0) = u(1) = 0}. Let Skv with v = {+, −} denote the set of functions u ∈ E which have exactly k − 1 interior nodal zeros in (0, 1) and vu be positive near 0. We show the existence of S-shaped connected component of Skv-solutions of the problem {(u′1−u′2)′+λa(x)f(u)=0,x∈(0,1),u(0)=u(1)=0,\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$\\\\left\\\\{ {\\\\begin{array}{*{20}{c}} {\\\\begin{array}{*{20}{c}} {{{\\\\left( {\\\\frac{{u'}}{{\\\\sqrt {1 - {{u'}^2}} }}} \\\\right)}^\\\\prime } + \\\\lambda a(x)f(u) = 0,}&{x \\\\in (0,1)} \\\\end{array}} \\\\\\\\ {u(0) = u(1) = 0,\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;\\\\;} \\\\end{array}} \\\\right.$$\\\\end{document} where λ > 0 is a parameter, a ∈ C([0, 1], (0, ∞)). We determine the intervals of parameter λ in which the above problem has one, two or three Skv-solutions. The proofs of the main results are based upon the bifurcation technique.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"321 - 333\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0027-20\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0027-20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设E={u∈C1[0,1]:u(0)=u(1)=0}。设v={+,−}的Skv表示函数u∈E的集合,其在(0,1)中正好有k−1个内部节点零,并且vu在0附近为正。我们证明了问题{(u′1−u′2)′+λa(x)f(u)=0,x∈(0,1),u(0)=u(1)=0,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\ usepackage{amsfonts}\usecpackage{amssymb}\userpackage{{amsbsy}\usecpackage{mathrsfs}\usepackage{upgek}\setlength左开始数组{c} }{\begin{array}{{*{20}}{c}}{{\left({\frac{u’})}{\;\;;\;}\end{array}}\right$$\end{document}其中λ>0是一个参数,a∈C([0,1],(0,∞))。我们确定参数λ的区间,其中上述问题具有一个、两个或三个Skv解。主要结果的证明是基于分叉技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
S-shaped component of nodal solutions for problem involving one-dimension mean curvature operator
Let E = {u ∈ C1[0, 1]: u(0) = u(1) = 0}. Let Skv with v = {+, −} denote the set of functions u ∈ E which have exactly k − 1 interior nodal zeros in (0, 1) and vu be positive near 0. We show the existence of S-shaped connected component of Skv-solutions of the problem {(u′1−u′2)′+λa(x)f(u)=0,x∈(0,1),u(0)=u(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{{\left( {\frac{{u'}}{{\sqrt {1 - {{u'}^2}} }}} \right)}^\prime } + \lambda a(x)f(u) = 0,}&{x \in (0,1)} \end{array}} \\ {u(0) = u(1) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \right.$$\end{document} where λ > 0 is a parameter, a ∈ C([0, 1], (0, ∞)). We determine the intervals of parameter λ in which the above problem has one, two or three Skv-solutions. The proofs of the main results are based upon the bifurcation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信