{"title":"一种新的混合观测预测方法,用于弥补INS/GNSS系统中的GNSS中断","authors":"Linzhouting Chen, Zhanchao Liu, Jiancheng Fang","doi":"10.1017/S037346332200025X","DOIUrl":null,"url":null,"abstract":"Abstract The integration of the inertial navigation system (INS) and global navigation satellite system (GNSS) is suited for localisation and navigation applications, such as aircrafts, land vehicles and ships. The primary challenge is for navigation system to achieve accurate and reliable navigation solution during GNSS outages. This paper presents an observation prediction methodology for INS/GNSS bridging GNSS outages, which combines partial least squares regression (PLSR) and Gaussian process regression (GPR) to model the INS/GNSS observations and enable a Kalman filter to estimate INS errors. The performance of proposed PLSR/GPR prediction methodology was validated through four GNSS outages taken on flight experiment data, including diverse manoeuvre conditions. The experiment results demonstrate that remarkable performance enhancements are achieved through applying the proposed PLSR/GPR prediction methodology into INS/GNSS integration.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1206 - 1225"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel hybrid observation prediction methodology for bridging GNSS outages in INS/GNSS systems\",\"authors\":\"Linzhouting Chen, Zhanchao Liu, Jiancheng Fang\",\"doi\":\"10.1017/S037346332200025X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The integration of the inertial navigation system (INS) and global navigation satellite system (GNSS) is suited for localisation and navigation applications, such as aircrafts, land vehicles and ships. The primary challenge is for navigation system to achieve accurate and reliable navigation solution during GNSS outages. This paper presents an observation prediction methodology for INS/GNSS bridging GNSS outages, which combines partial least squares regression (PLSR) and Gaussian process regression (GPR) to model the INS/GNSS observations and enable a Kalman filter to estimate INS errors. The performance of proposed PLSR/GPR prediction methodology was validated through four GNSS outages taken on flight experiment data, including diverse manoeuvre conditions. The experiment results demonstrate that remarkable performance enhancements are achieved through applying the proposed PLSR/GPR prediction methodology into INS/GNSS integration.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"75 1\",\"pages\":\"1206 - 1225\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S037346332200025X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S037346332200025X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A novel hybrid observation prediction methodology for bridging GNSS outages in INS/GNSS systems
Abstract The integration of the inertial navigation system (INS) and global navigation satellite system (GNSS) is suited for localisation and navigation applications, such as aircrafts, land vehicles and ships. The primary challenge is for navigation system to achieve accurate and reliable navigation solution during GNSS outages. This paper presents an observation prediction methodology for INS/GNSS bridging GNSS outages, which combines partial least squares regression (PLSR) and Gaussian process regression (GPR) to model the INS/GNSS observations and enable a Kalman filter to estimate INS errors. The performance of proposed PLSR/GPR prediction methodology was validated through four GNSS outages taken on flight experiment data, including diverse manoeuvre conditions. The experiment results demonstrate that remarkable performance enhancements are achieved through applying the proposed PLSR/GPR prediction methodology into INS/GNSS integration.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.