遥感分类的空间线性判别分析方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Thomas Suesse , Alexander Brenning , Veronika Grupp
{"title":"遥感分类的空间线性判别分析方法","authors":"Thomas Suesse ,&nbsp;Alexander Brenning ,&nbsp;Veronika Grupp","doi":"10.1016/j.spasta.2023.100775","DOIUrl":null,"url":null,"abstract":"<div><p>Linear Discriminant Analysis (LDA) is a popular and simple classification tool that often outperforms more sophisticated modern machine learning techniques in remote sensing. We introduce a novel LDA method that uses spatial autocorrelation of all pixels of an object to be classified but also of other objects of the training set that are spatially close to improve classification performance. To simplify spatial modelling and model fitting, the methodology is applied to the transformed feature vectors. We term this method conditional spatial LDA. Much alike universal Kriging in geostatistical interpolation, the combined use of feature data and conditioning on labelled training data in conditional spatial LDA was best able to exploit the available geospatial data. The method is illustrated on a crop classification case study from the Aconcagua agricultural region in central Chile.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial linear discriminant analysis approaches for remote-sensing classification\",\"authors\":\"Thomas Suesse ,&nbsp;Alexander Brenning ,&nbsp;Veronika Grupp\",\"doi\":\"10.1016/j.spasta.2023.100775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Linear Discriminant Analysis (LDA) is a popular and simple classification tool that often outperforms more sophisticated modern machine learning techniques in remote sensing. We introduce a novel LDA method that uses spatial autocorrelation of all pixels of an object to be classified but also of other objects of the training set that are spatially close to improve classification performance. To simplify spatial modelling and model fitting, the methodology is applied to the transformed feature vectors. We term this method conditional spatial LDA. Much alike universal Kriging in geostatistical interpolation, the combined use of feature data and conditioning on labelled training data in conditional spatial LDA was best able to exploit the available geospatial data. The method is illustrated on a crop classification case study from the Aconcagua agricultural region in central Chile.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675323000507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

线性判别分析(LDA)是一种流行而简单的分类工具,在遥感中通常优于更复杂的现代机器学习技术。我们提出了一种新的LDA方法,该方法利用待分类对象的所有像素的空间自相关,以及训练集中空间接近的其他对象的空间自相关来提高分类性能。为了简化空间建模和模型拟合,将该方法应用于变换后的特征向量。我们称这种方法为条件空间LDA。与地理统计插值中的通用Kriging方法非常相似,在条件空间LDA中,结合使用特征数据和对标记训练数据的调节,可以最好地利用可用的地理空间数据。该方法以智利中部阿空加瓜农业区的作物分类案例研究为例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial linear discriminant analysis approaches for remote-sensing classification

Linear Discriminant Analysis (LDA) is a popular and simple classification tool that often outperforms more sophisticated modern machine learning techniques in remote sensing. We introduce a novel LDA method that uses spatial autocorrelation of all pixels of an object to be classified but also of other objects of the training set that are spatially close to improve classification performance. To simplify spatial modelling and model fitting, the methodology is applied to the transformed feature vectors. We term this method conditional spatial LDA. Much alike universal Kriging in geostatistical interpolation, the combined use of feature data and conditioning on labelled training data in conditional spatial LDA was best able to exploit the available geospatial data. The method is illustrated on a crop classification case study from the Aconcagua agricultural region in central Chile.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信